Supercongruences concerning truncated hypergeometric series

被引:0
|
作者
Chen Wang
Hao Pan
机构
[1] Nanjing University,Department of Mathematics
[2] Nanjing University of Finance and Economics,School of Applied Mathematics
来源
Mathematische Zeitschrift | 2022年 / 300卷
关键词
Truncated hypergeometric series; Supercongruences; -adic Gamma function; The Karlsson–Minton formula; Primary 33C20; Secondary 05A10; 11A07; 11B65; 33E50;
D O I
暂无
中图分类号
学科分类号
摘要
Let n≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 3$$\end{document} be an integer and p be a prime with p≡1(modn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\equiv 1\pmod {n}$$\end{document}. In this paper, we show that nFn-1[n-1nn-1n…n-1n1…1|1]p-1≡-Γp(1n)n(modp3),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {}_nF_{n-1}\bigg [\begin{array}{llll} \frac{n-1}{n}&{}\frac{n-1}{n}&{}\ldots &{}\frac{n-1}{n}\\ &{}1&{}\ldots &{}1\end{array}\bigg | \, 1\bigg ]_{p-1}\equiv -\Gamma _p\bigg (\frac{1}{n}\bigg )^n\pmod {p^3}, \end{aligned}$$\end{document}where the truncated hypergeometric series nFn-1[x1x2…xny1⋯yn-1|z]m=∑k=0mzkk!∏j=0k-1(x1+j)⋯(xn+j)(y1+j)⋯(yn-1+j)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {}_nF_{n-1}\bigg [\begin{array}{llll} x_1&{}x_2&{}\ldots &{}x_n\\ &{}y_1&{}\cdots &{}y_{n-1}\end{array}\bigg | \, z\bigg ]_m=\sum _{k=0}^{m}\frac{z^k}{k!}\prod _{j=0}^{k-1}\frac{(x_1+j)\cdots (x_{n}+j)}{(y_1+j)\cdots (y_{n-1}+j)} \end{aligned}$$\end{document}and Γp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _p$$\end{document} denotes the p-adic Gamma function. This confirms a conjecture of Deines et al. (Hypergeometric Series, Truncated Hypergeometric Series, and Gaussian Hypergeometric Functions, Directions in Number Theory, vol. 3, pp. 125–159. Assoc.WomenMath. Ser., Springer, New York, 2016). Furthermore, under the same assumptions, we also prove that pn·n+1Fn[11…1n+1n…n+1n|1]p-1≡-Γp1nn(modp3),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} p^n\cdot {}_{n+1}F_{n}\bigg [\begin{matrix} 1&{}1&{}\ldots &{}1\\ &{}\frac{n+1}{n}&{}\ldots &{}\frac{n+1}{n}\end{matrix}\bigg | \, 1\bigg ]_{p-1} \equiv -\Gamma _p\left( \frac{1}{n}\right) ^n\pmod {p^3}, \end{aligned}$$\end{document}which solves another conjecture in [5].
引用
收藏
页码:161 / 177
页数:16
相关论文
共 50 条