On Evaluations of Euler-Type Sums of Hyperharmonic Numbers

被引:0
|
作者
Levent Kargın
Mümün Can
Ayhan Dil
Mehmet Cenkci
机构
[1] Akdeniz University,Department of Mathematics
关键词
Euler sums; Harmonic numbers; Hyperharmonic numbers; Binomial coefficients; Stirling numbers; Riemann zeta values; 11M41; 11B75; 05A10; 11B73; 11M06;
D O I
暂无
中图分类号
学科分类号
摘要
We give explicit evaluations of the linear and non-linear Euler sums of hyperharmonic numbers hnr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_{n}^{\left( r\right) }$$\end{document} with reciprocal binomial coefficients. These evaluations enable us to extend closed form formula of Euler sums of hyperharmonic numbers to an arbitrary integer r. Moreover, we reach at explicit formulas for the shifted Euler-type sums of harmonic and hyperharmonic numbers. All the evaluations are provided in terms of the Riemann zeta values, harmonic numbers and linear Euler sums.
引用
收藏
页码:113 / 131
页数:18
相关论文
共 50 条