Hawking radiation from quasilocal dynamical horizons

被引:0
|
作者
AYAN CHATTERJEE
机构
[1] Central University of Himachal Pradesh,Department of Physics and Astronomical Science
来源
Pramana | 2016年 / 86卷
关键词
Black hole evolution; Hawking radiation.; 04.70.Dy; 04.60.−m; 04.62.+v;
D O I
暂无
中图分类号
学科分类号
摘要
In completely local settings, we establish that a dynamically evolving spherically symmetric black hole horizon can be assigned a Hawking temperature and with the emission of flux, radius of the horizon shrinks.
引用
收藏
页码:307 / 314
页数:7
相关论文
共 50 条
  • [1] Hawking radiation from quasilocal dynamical horizons
    Chatterjee, Ayan
    PRAMANA-JOURNAL OF PHYSICS, 2016, 86 (02): : 307 - 314
  • [2] Hawking radiation from dynamical horizons
    Chatterjee, Ayan
    Chatterjee, Bhramar
    Ghosh, Amit
    PHYSICAL REVIEW D, 2013, 87 (08):
  • [3] Information Recovery with Hawking Radiation from Dynamical Horizons
    Guo, Xiao-Kan
    Cai, Qing-yu
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2014, 53 (09) : 2980 - 2987
  • [4] Information Recovery with Hawking Radiation from Dynamical Horizons
    Xiao-Kan Guo
    Qing-yu Cai
    International Journal of Theoretical Physics, 2014, 53 : 2980 - 2987
  • [5] Hawking radiation from universal horizons
    Herrero-Valea, Mario
    Liberati, Stefano
    Santos-Garcia, Raquel
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (04)
  • [6] Hawking radiation from universal horizons
    Mario Herrero-Valea
    Stefano Liberati
    Raquel Santos-Garcia
    Journal of High Energy Physics, 2021
  • [7] Anomalies, horizons and Hawking radiation
    Gangopadhyay, Sunandan
    EPL, 2009, 85 (01)
  • [8] Hawking radiation from "phase horizons'' in laser filaments?
    Unruh, W. G.
    Schuetzhold, R.
    PHYSICAL REVIEW D, 2012, 86 (06)
  • [9] COVARIANT ANOMALIES, HORIZONS AND HAWKING RADIATION
    Banerjee, Rabin
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2008, 17 (13-14): : 2539 - 2542
  • [10] Is the Hawking Quasilocal Energy "Newtonian"?
    Faraoni, Valerio
    SYMMETRY-BASEL, 2015, 7 (04): : 2038 - 2046