Stochastic Invariance for Differential Inclusions

被引:0
|
作者
Jean-Pierre Aubin
Giuseppe Da Prato
Hélène Frankowska
机构
[1] Université de Paris-Dauphine,Centre de Recherche, Viabilité, Jeux, Contrôle
来源
Set-Valued Analysis | 2000年 / 8卷
关键词
stochastic invariance; viability; stochastic differential inclusions;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to combine two ways for representing uncertainty through stochastic differential inclusions: a 'stochastic uncertainty", driven by a Wiener process, and a 'contingent uncertainty", driven by a set-valued map. The paper is also devoted to the invariance of closed under stochastic differential inclusions with a Lipschitz right-hand side, characterized in terms of stochastic tangent sets to closed subsets.
引用
收藏
页码:181 / 201
页数:20
相关论文
共 50 条
  • [1] Stochastic invariance for differential inclusions
    Aubin, JP
    Da Prato, G
    Frankowska, H
    SET-VALUED ANALYSIS, 2000, 8 (1-2): : 181 - 201
  • [2] Invariance principles for delay differential inclusions
    Liu, Kun-Zhi
    Sun, Xi-Ming
    Wang, Wei
    Liu, Jun
    2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 144 - 149
  • [3] Backward stochastic differential inclusions
    Kisielewicz, Michal
    DYNAMIC SYSTEMS AND APPLICATIONS, 2007, 16 (01): : 121 - 139
  • [4] ON SOLUTIONS TO STOCHASTIC DIFFERENTIAL INCLUSIONS
    Michta, Mariusz
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2003, : 618 - 622
  • [5] Stochastic approximations and differential inclusions
    Benaïm, M
    Hofbauer, J
    Sorin, S
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2005, 44 (01) : 328 - 348
  • [6] Trajectories of Differential Inclusions on Riemannian Manifolds and Invariance
    M. R. Pouryayevali
    H. Radmanesh
    Set-Valued and Variational Analysis, 2019, 27 : 241 - 264
  • [7] On Generalized Differentials, Viability and Invariance of Differential Inclusions
    Bartosiewicz, Zbigniew
    Girejko, Ewa
    JOURNAL OF CONVEX ANALYSIS, 2008, 15 (04) : 819 - 830
  • [8] Viability and invariance kernels of impulse differential inclusions
    Aubin, JP
    Lygeros, J
    Quincampoix, M
    Sastry, S
    Seube, N
    PROCEEDINGS OF THE 40TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2001, : 1639 - 1644
  • [9] Trajectories of Differential Inclusions on Riemannian Manifolds and Invariance
    Pouryayevali, M. R.
    Radmanesh, H.
    SET-VALUED AND VARIATIONAL ANALYSIS, 2019, 27 (01) : 241 - 264
  • [10] INVARIANCE ENVELOPES FOR LIPSCHITZEAN DIFFERENTIAL-INCLUSIONS
    QUINCAMPOIX, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 314 (05): : 343 - 347