Galois representations attached to representations of GU(3)

被引:0
|
作者
Andrew H. Knightly
机构
[1] Department of Mathematics,
[2] University of California,undefined
[3] Los Angeles,undefined
[4] CA 90024 (e-mail: knightly@math.ucla.edu),undefined
来源
Mathematische Annalen | 2001年 / 321卷
关键词
Galois Representation; Automorphic Representation; Cuspidal Representation; Cuspidal Automorphic Representation; Orthogonal Case;
D O I
暂无
中图分类号
学科分类号
摘要
For a fixed prime \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\ell\in{\mathbf Z}$\end{document} we compute the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\ell$\end{document}-adic Lie algebra of the image of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\ell$\end{document}-adic Galois representation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\rho$\end{document} attached to a stable cuspidal automorphic representation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\pi$\end{document} of the unitary similitude group GU(3). This result depends on whether \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\pi$\end{document} admits extra twists in the sense defined below. Two cases emerge: orthogonal image and non-orthogonal image. We show that in the orthogonal case there exists a character \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\nu$\end{document} such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\rho\otimes\nu$\end{document} is the Galois representation attached to the unitary adjoint lift of a cuspidal representation of GL(2).
引用
收藏
页码:375 / 398
页数:23
相关论文
共 50 条