Estimation of an unknown cartographic projection and its parameters from the map

被引:0
|
作者
Tomas Bayer
机构
[1] Charles University in Prague,Department of Applied Geoinformatics and Cartography, Faculty of Sciences
来源
GeoInformatica | 2014年 / 18卷
关键词
Digital cartography; Map projection; Analysis; Simplex method; Optimization; Voronoi diagram; Outliers detection; Early maps; Georeferencing; Cartographic heritage; Meta data; Marc 21; MapAnalyst;
D O I
暂无
中图分类号
学科分类号
摘要
This article presents a new off-line method for the detection, analysis and estimation of an unknown cartographic projection and its parameters from a map. Several invariants are used to construct the objective function ϕ that describes the relationship between the 0D, 1D, and 2D entities on the analyzed and reference maps. It is minimized using the Nelder-Mead downhill simplex algorithm. A simplified and computationally cheaper version of the objective function ϕ involving only 0D elements is also presented. The following parameters are estimated: a map projection type, a map projection aspect given by the meta pole K coordinates [φk, λk], a true parallel latitude φ0, central meridian longitude λ0, a map scale, and a map rotation. Before the analysis, incorrectly drawn elements on the map can be detected and removed using the IRLS. Also introduced is a new method for computing the L2 distance between the turning functions Θ1, Θ2 of the corresponding faces using dynamic programming. Our approach may be used to improve early map georeferencing; it can also be utilized in studies of national cartographic heritage or land use applications. The results are presented both for the real cartographic data, representing early maps from the David Rumsay Map Collection, and for the synthetic tests.
引用
收藏
页码:621 / 669
页数:48
相关论文
共 50 条
  • [1] Estimation of an unknown cartographic projection and its parameters from the map
    Bayer, Tomas
    [J]. GEOINFORMATICA, 2014, 18 (03) : 621 - 669
  • [2] Advanced methods for the estimation of an unknown projection from a map
    Tomas Bayer
    [J]. GeoInformatica, 2016, 20 : 241 - 284
  • [3] Advanced methods for the estimation of an unknown projection from a map
    Bayer, Tomas
    [J]. GEOINFORMATICA, 2016, 20 (02) : 241 - 284
  • [4] Depth Map Estimation with Unknown Fixed Pattern Projection
    Tanaka, Masayuki
    Fujita, Katsuhiro
    Okutomi, Masatoshi
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE), 2018,
  • [5] ESTIMATION OF MOTION PARAMETERS OF A RIGID BODY FROM ITS ORTHOGONAL PROJECTION
    GANGULY, S
    GHOSH, B
    TARN, TJ
    BEJCZY, AK
    [J]. PROCEEDINGS OF THE 1989 AMERICAN CONTROL CONFERENCE, VOLS 1-3, 1989, : 2609 - 2614
  • [6] Quantum estimation of unknown parameters
    Martinez-Vargas, Esteban
    Pineda, Carlos
    Leyvraz, Francois
    Barberis-Blostein, Pablo
    [J]. PHYSICAL REVIEW A, 2017, 95 (01)
  • [7] Cartographic presentation - from simple to complex map
    Korycka-Skorupa, Jolanta
    Nowacki, Tomasz
    [J]. MISCELLANEA GEOGRAPHICA, 2019, 23 (01): : 16 - 22
  • [8] Reconstruction of Map Projection, its Inverse and Re-Projection
    Tomáš Bayer
    Milada Kočandrlová
    [J]. Applications of Mathematics, 2018, 63 : 455 - 481
  • [9] Reconstruction of Map Projection, its Inverse and Re-Projection
    Bayer, Toma
    Kocandrlova, Milada
    [J]. APPLICATIONS OF MATHEMATICS, 2018, 63 (04) : 455 - 481
  • [10] Estimation of Unknown Parameters in Optimum Allocation
    Park, Hyeonah
    Park, Seunghwan
    Na, Seongryong
    [J]. COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2013, 20 (02) : 137 - 145