On Dirichlet Type Problems of Polynomial Dirac Equations with Boundary Conditions

被引:0
|
作者
Denis Constales
Dennis Grob
Rolf Sören Kraußhar
机构
[1] Ghent University,Department of Mathematical Analysis
[2] Lehrstuhl A für Mathematik,Erziehungswissenschaftliche Fakultät, Mathematik und Ihre Didaktik
[3] RWTH Aachen,undefined
[4] Universität Erfurt,undefined
来源
Results in Mathematics | 2013年 / 64卷
关键词
30 G 35; 32 A 25; 31 B 20; Polynomial Dirac equations; Dirichlet problems; reproducing kernels; Bergman and Hardy spaces; annular domains; Clifford analysis; Harmonic analysis; Maxwell equations; Helmholtz type equations; Klein–Gordon equation;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bf D}_{\bf x} := \sum_{i=1}^n \frac{\partial}{\partial x_i} e_i}$$\end{document} be the Euclidean Dirac operator in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^n}$$\end{document} and let P(X) = amXm + . . . + a1X +  a0 be a polynomial with real coefficients. Differential equations of the form P(Dx)u(x) = 0 are called homogeneous polynomial Dirac equations with real coefficients. In this paper we treat Dirichlet type problems of the a slightly less general form P(Dx)u(x) = f(x) (where the roots are exclusively real) with prescribed boundary conditions that avoid blow-ups inside the domain. We set up analytic representation formulas for the solutions in terms of hypercomplex integral operators and give exact formulas for the integral kernels in the particular cases dealing with spherical and concentric annular domains. The Maxwell and the Klein–Gordon equation are included as special subcases in this context.
引用
收藏
页码:193 / 213
页数:20
相关论文
共 50 条