Inequalities for the Extremal Coefficients of Multivariate Extreme Value Distributions

被引:0
|
作者
Martin Schlather
Jonathan Tawn
机构
[1] University of Bayreuth,Soil Physics Group
[2] Lancaster University,Department of Mathematics and Statistics
关键词
dependence measures; extremal coefficient; multivariate extreme value distribution; inequalities; self-consistency;
D O I
10.1023/A:1020938210765
中图分类号
学科分类号
摘要
The extremal coefficients are the natural dependence measures for multivariate extreme value distributions. For an m-variate distribution 2m distinct extremal coefficients of different orders exist; they are closely linked and therefore a complete set of 2m coefficients cannot take any arbitrary values. We give a full characterization of all the sets of extremal coefficients. To this end, we introduce a simple class of extreme value distributions that allows for a 1-1 mapping to the complete sets of extremal coefficients. We construct bounds that higher order extremal coefficients need to satisfy to be consistent with lower order extremal coefficients. These bounds are useful as lower order extremal coefficients are the most easily inferred from data.
引用
收藏
页码:87 / 102
页数:15
相关论文
共 50 条
  • [1] On the copula for multivariate extreme value distributions
    Sanfins, Marco Aurelio
    Valle, Glauco
    [J]. BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2012, 26 (03) : 288 - 305
  • [2] MODELING MULTIVARIATE EXTREME VALUE DISTRIBUTIONS
    TAWN, JA
    [J]. BIOMETRIKA, 1990, 77 (02) : 245 - 253
  • [3] The multivariate extremal index and the dependence structure of a multivariate extreme value distribution
    A. P. Martins
    H. Ferreira
    [J]. TEST, 2005, 14 : 433 - 448
  • [4] The multivariate extremal index and the dependence structure of a multivariate extreme value distribution
    Martins, AP
    Ferreira, H
    [J]. TEST, 2005, 14 (02) : 433 - 447
  • [5] MULTIVARIATE EXTREMAL DISTRIBUTIONS
    GUMBEL, EJ
    [J]. BULLETIN OF THE INTERNATIONAL STATISTICAL INSTITUTE, 1962, 39 (02): : 471 - 475
  • [6] MULTIVARIATE EXTREMAL DISTRIBUTIONS
    GUMBEL, EJ
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1960, 31 (04): : 1216 - 1216
  • [7] Bayesian inference for multivariate extreme value distributions
    Dombry, Clement
    Engelke, Sebastian
    Oesting, Marco
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (02): : 4813 - 4844
  • [8] A construction principle for multivariate extreme value distributions
    Ballani, F.
    Schlather, M.
    [J]. BIOMETRIKA, 2011, 98 (03) : 633 - 645
  • [9] DOMAINS OF ATTRACTION OF MULTIVARIATE EXTREME VALUE DISTRIBUTIONS
    MARSHALL, AW
    OLKIN, I
    [J]. ANNALS OF PROBABILITY, 1983, 11 (01): : 168 - 177
  • [10] Dense classes of multivariate extreme value distributions
    Fougeres, Anne-Laure
    Mercadier, Cecile
    Nolan, John P.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 116 : 109 - 129