Comparison of Feature Selection Techniques in Machine Learning for Anatomical Brain MRI in Dementia

被引:0
|
作者
Jussi Tohka
Elaheh Moradi
Heikki Huttunen
机构
[1] Universidad Carlos III de Madrid,Department of Bioengineering and Aerospace Engineering
[2] Instituto de Investigación Sanitaria Gregorio Marañon,Department of Signal Processing
[3] Tampere University of Technology,undefined
来源
Neuroinformatics | 2016年 / 14卷
关键词
Magnetic Resonance Imaging; Machine Learning; Feature selection; Alzheimer’s Disease; Classification; Multivariate pattern analysis;
D O I
暂无
中图分类号
学科分类号
摘要
We present a comparative split-half resampling analysis of various data driven feature selection and classification methods for the whole brain voxel-based classification analysis of anatomical magnetic resonance images. We compared support vector machines (SVMs), with or without filter based feature selection, several embedded feature selection methods and stability selection. While comparisons of the accuracy of various classification methods have been reported previously, the variability of the out-of-training sample classification accuracy and the set of selected features due to independent training and test sets have not been previously addressed in a brain imaging context. We studied two classification problems: 1) Alzheimer’s disease (AD) vs. normal control (NC) and 2) mild cognitive impairment (MCI) vs. NC classification. In AD vs. NC classification, the variability in the test accuracy due to the subject sample did not vary between different methods and exceeded the variability due to different classifiers. In MCI vs. NC classification, particularly with a large training set, embedded feature selection methods outperformed SVM-based ones with the difference in the test accuracy exceeding the test accuracy variability due to the subject sample. The filter and embedded methods produced divergent feature patterns for MCI vs. NC classification that suggests the utility of the embedded feature selection for this problem when linked with the good generalization performance. The stability of the feature sets was strongly correlated with the number of features selected, weakly correlated with the stability of classification accuracy, and uncorrelated with the average classification accuracy.
引用
收藏
页码:279 / 296
页数:17
相关论文
共 50 条
  • [1] Comparison of Feature Selection Techniques in Machine Learning for Anatomical Brain MRI in Dementia
    Tohka, Jussi
    Moradi, Elaheh
    Huttunen, Heikki
    NEUROINFORMATICS, 2016, 14 (03) : 279 - 296
  • [2] A Survey of Feature Selection and Feature Extraction Techniques in Machine Learning
    Khalid, Samina
    Khalil, Tehmina
    Nasreen, Shamila
    2014 SCIENCE AND INFORMATION CONFERENCE (SAI), 2014, : 372 - 378
  • [3] Enhancing brain cancer type prediction through machine learning algorithms and feature selection techniques
    Gu, Cong
    Ren, Siyv
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (42)
  • [4] Osteoporosis Detection Using Machine Learning Techniques and Feature Selection
    Iliou, Theodoros
    Anagnostopoulos, Christos-Nikolaos
    Anastassopoulos, George
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2014, 23 (05)
  • [5] Prediction of Cardiovascular Disease by Feature Selection and Machine Learning Techniques
    Ranade, Aditya
    Pise, Nitin
    ARTIFICIAL INTELLIGENCE: THEORY AND APPLICATIONS, VOL 2, AITA 2023, 2024, 844 : 457 - 472
  • [6] Comparison of Multiple Feature Selection Techniques for Machine Learning-Based Detection of IoT Attacks
    Viet Anh Phan
    Jerabek, Jan
    Malina, Lukas
    19TH INTERNATIONAL CONFERENCE ON AVAILABILITY, RELIABILITY, AND SECURITY, ARES 2024, 2024,
  • [7] Feature extraction from MRI ADC images for brain tumor classification using machine learning techniques
    Sahan M. Vijithananda
    Mohan L. Jayatilake
    Badra Hewavithana
    Teresa Gonçalves
    Luis M. Rato
    Bimali S. Weerakoon
    Tharindu D. Kalupahana
    Anil D. Silva
    Karuna D. Dissanayake
    BioMedical Engineering OnLine, 21
  • [8] Feature extraction from MRI ADC images for brain tumor classification using machine learning techniques
    Vijithananda, Sahan M.
    Jayatilake, Mohan L.
    Hewavithana, Badra
    Goncalves, Teresa
    Rato, Luis M.
    Weerakoon, Bimali S.
    Kalupahana, Tharindu D.
    Silva, Anil D.
    Dissanayake, Karuna D.
    BIOMEDICAL ENGINEERING ONLINE, 2022, 21 (01)
  • [9] Android malware detection applying feature selection techniques and machine learning
    Keyvanpour, Mohammad Reza
    Shirzad, Mehrnoush Barani
    Heydarian, Farideh
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (06) : 9517 - 9531
  • [10] Obsolescence Prediction based on Joint Feature Selection and Machine Learning Techniques
    Trabelsi, Imen
    Zeddini, Besma
    Zolghadri, Marc
    Barkallah, Maher
    Haddar, Mohamed
    ICAART: PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE - VOL 2, 2021, : 787 - 794