On Templeman averages and variation functions

被引:0
|
作者
R. Nair
机构
[1] University of Liverpool,Pure Mathematics Division, Mathematical Sciences
来源
关键词
-norm operator; variation function; Templeman ergodic averages; 28D99; 60G10; 60G12;
D O I
暂无
中图分类号
学科分类号
摘要
Let S be a countable semigroup acting in a measure-preserving fashion (g ↦ Tg) on a measure space (Ω, A, µ). For a finite subset A of S, let |A| denote its cardinality. Let (Ak)k=1∞ be a sequence of subsets of S satisfying conditions related to those in the ergodic theorem for semi-group actions of A. A. Tempelman. For A-measureable functions f on the measure space (Ω, A, μ) we form for k ≥ 1 the Templeman averages \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _k (f)(x) = \left| {A_k } \right|^{ - 1} \sum\nolimits_{g \in A_k } {T_g f(x)}$$\end{document} and set Vqf(x) = (Σk≥1|πk+1(f)(x) − πk(f)(x)|q)1/q when q ∈ (1, 2]. We show that there exists C > 0 such that for all f in L1(Ω, A, µ) we have µ({x ∈ Ω: Vqf(x) > λ}) ≤ C(∫Ω | f | dµ/λ). Finally, some concrete examples are constructed.
引用
收藏
页码:39 / 51
页数:12
相关论文
共 50 条
  • [1] ON TEMPLEMAN AVERAGES AND VARIATION FUNCTIONS
    Nair, R.
    PERIODICA MATHEMATICA HUNGARICA, 2012, 64 (01) : 39 - 51
  • [2] On Variation Functions for Subsequence Ergodic Averages
    R. Nair
    M. Weber
    Monatshefte für Mathematik, 1999, 128 : 131 - 150
  • [3] On variation functions for subsequence ergodic averages
    Nair, R
    Weber, M
    MONATSHEFTE FUR MATHEMATIK, 1999, 128 (02): : 131 - 150
  • [4] Characteristic functions and averages
    Azevedo A.
    Afrika Matematika, 2013, 24 (1) : 69 - 75
  • [5] On the averages of Darboux functions
    Maliszewski, A
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (07) : 2833 - 2846
  • [6] Variation bounds for spherical averages
    David Beltran
    Richard Oberlin
    Luz Roncal
    Andreas Seeger
    Betsy Stovall
    Mathematische Annalen, 2022, 382 : 459 - 512
  • [7] Variation bounds for spherical averages
    Beltran, David
    Oberlin, Richard
    Roncal, Luz
    Seeger, Andreas
    Stovall, Betsy
    MATHEMATISCHE ANNALEN, 2022, 382 (1-2) : 459 - 512
  • [8] Harmonic functions and averages on shells
    Wolfhard Hansen
    Nikolai Nadirashvili
    Journal d’Analyse Mathématique, 2001, 84 : 231 - 241
  • [10] Monotonic averages of convex functions
    Bennett, G
    Jameson, G
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 252 (01) : 410 - 430