Exact Perturbative Results for the Lieb–Liniger and Gaudin–Yang Models

被引:0
|
作者
Marcos Mariño
Tomás Reis
机构
[1] Université de Genève,Département de Physique Théorique et Section de Mathématiques
来源
关键词
Quantum gases; Bethe ansatz; Nonperturbative effects;
D O I
暂无
中图分类号
学科分类号
摘要
We present a systematic procedure to extract the perturbative series for the ground state energy density in the Lieb–Liniger and Gaudin–Yang models, starting from the Bethe ansatz solution. This makes it possible to calculate explicitly the coefficients of these series and to study their large order behavior. We find that both series diverge factorially and are not Borel summable. In the case of the Gaudin–Yang model, the first Borel singularity is determined by the non-perturbative energy gap. This provides a new perspective on the Cooper instability.
引用
收藏
页码:1148 / 1156
页数:8
相关论文
共 50 条
  • [1] Exact Perturbative Results for the Lieb-Liniger and Gaudin-Yang Models
    Marino, Marcos
    Reis, Tomas
    JOURNAL OF STATISTICAL PHYSICS, 2019, 177 (06) : 1148 - 1156
  • [2] Gruneisen parameters for the Lieb-Liniger and Yang-Gaudin models
    Peng, Li
    Yu, Yicong
    Guan, Xi-Wen
    PHYSICAL REVIEW B, 2019, 100 (24)
  • [3] Exact results of dynamical structure factor of Lieb-Liniger model
    Li, Run-Tian
    Cheng, Song
    Chen, Yang-Yang
    Guan, Xi-Wen
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (33)
  • [4] Conjectures about the structure of strong- and weak-coupling expansions of a few ground-state observables in the Lieb-Liniger and yang-Gaudin models
    Lang, Guillaume
    SCIPOST PHYSICS, 2019, 7 (04):
  • [5] Exact formulas for the form factors of local operators in the Lieb-Liniger model
    Piroli, Lorenzo
    Calabrese, Pasquale
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (45)
  • [6] Exact overlaps in the Lieb-Liniger model from coordinate Bethe ansatz
    Chen, Hui-Huang
    PHYSICS LETTERS B, 2020, 808
  • [7] Exact correlations in the Lieb-Liniger model and detailed balance out of equilibrium
    De Nardis, J.
    Panfil, M.
    SCIPOST PHYSICS, 2016, 1 (02):
  • [8] Non relativistic limit of integrable QFT and Lieb-Liniger models
    Bastianello, Alvise
    De Luca, Andrea
    Mussardo, Giuseppe
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2016,
  • [9] Exact matrix elements of the field operator in the thermodynamic limit of the Lieb-Liniger model
    Bettelheim, Eldad
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (38)
  • [10] N=2 supersymmetric quantum mechanics of N Lieb-Liniger-Yang bosons on a line
    Mateos Guilarte, J.
    Moreno Mosquera, A.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (02):