Some classes of power functions with low c-differential uniformity over finite fields

被引:0
|
作者
Zhengbang Zha
Lei Hu
机构
[1] Luoyang Normal University,School of Mathematical Sciences
[2] Institute of Information Engineering,State Key Laboratory of Information Security
[3] Chinese Academy of Sciences,School of Cyber Security
[4] University of Chinese Academy of Sciences,undefined
来源
关键词
Almost perfect nonlinear function; Differential uniformity; Perfect nonlinear function; 94A60; 11T71; 14G50;
D O I
暂无
中图分类号
学科分类号
摘要
Functions with low c-differential uniformity have optimal resistance to some types of differential cryptanalysis. In this paper, we investigate the c-differential uniformity of power functions over finite fields of odd characteristic. Based on some known almost perfect nonlinear functions, we present several classes of power functions f(x)=xd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x)=x^d$$\end{document} with cΔf≤3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{c}\varDelta _f\le 3$$\end{document}. Especially, two new classes of perfect c-nonlinear power functions are proposed.
引用
收藏
页码:1193 / 1210
页数:17
相关论文
共 50 条
  • [1] Some classes of power functions with low c-differential uniformity over finite fields
    Zha, Zhengbang
    Hu, Lei
    DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (06) : 1193 - 1210
  • [2] Some classes of functions with low c-differential uniformity over finite fields
    Li, Guanghui
    Cao, Xiwang
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024,
  • [3] On the c-differential spectrum of power functions over finite fields
    Haode Yan
    Kun Zhang
    Designs, Codes and Cryptography, 2022, 90 : 2385 - 2405
  • [4] On the c-differential spectrum of power functions over finite fields
    Yan, Haode
    Zhang, Kun
    DESIGNS CODES AND CRYPTOGRAPHY, 2022, 90 (10) : 2385 - 2405
  • [5] On the c-differential uniformity of certain maps over finite fields
    Ul Hasan, Sartaj
    Pal, Mohit
    Riera, Constanza
    Stanica, Pantelimon
    DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (02) : 221 - 239
  • [6] On the c-differential uniformity of certain maps over finite fields
    Sartaj Ul Hasan
    Mohit Pal
    Constanza Riera
    Pantelimon  Stănică
    Designs, Codes and Cryptography, 2021, 89 : 221 - 239
  • [7] Bivariate functions with low c-differential uniformity
    Wu, Yanan
    Stanica, Pantelimon
    Li, Chunlei
    Li, Nian
    Zeng, Xiangyong
    FINITE FIELDS AND THEIR APPLICATIONS, 2024, 96
  • [8] Boomerang uniformity of some classes of functions over finite fields
    Garg, Kirpa
    Ul Hasan, Sartaj
    Stanica, Pantelimon
    DISCRETE APPLIED MATHEMATICS, 2024, 343 : 166 - 179
  • [9] Low c-differential uniformity for functions modified on subfields
    Bartoli, Daniele
    Calderini, Marco
    Riera, Constanza
    Stanica, Pantelimon
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2022, 14 (06): : 1211 - 1227
  • [10] On a class of APN power functions over odd characteristic finite fields: Their differential spectrum and c-differential properties
    Yan, Haode
    Mesnager, Sihem
    Tan, Xiantong
    DISCRETE MATHEMATICS, 2024, 347 (04)