Joint Label-Specific Features and Correlation Information for Multi-Label Learning

被引:0
|
作者
Xiu-Yi Jia
Sai-Sai Zhu
Wei-Wei Li
机构
[1] Nanjing University of Science and Technology,School of Computer Science and Engineering
[2] Nanjing University of Aeronautics and Astronautics,College of Astronautics
关键词
multi-label learning; label-specific feature; sparse reconstruction; label correlation; sample correlation;
D O I
暂无
中图分类号
学科分类号
摘要
Multi-label learning deals with the problem where each instance is associated with a set of class labels. In multi-label learning, different labels may have their own inherent characteristics for distinguishing each other, and the correlation information has shown promising strength in improving multi-label learning. In this study, we propose a novel multi-label learning method by simultaneously taking into account both the learning of label-specific features and the correlation information during the learning process. Firstly, we learn a sparse weight parameter vector for each label based on the linear regression model, and the label-specific features can be extracted according to the corresponding weight parameters. Secondly, we constrain label correlations directly on the output of labels, not on the corresponding parameter vectors which conflicts with the label-specific feature learning. Specifically, for any two related labels, their corresponding models should have similar outputs rather than similar parameter vectors. Thirdly, we also exploit the sample correlations through sparse reconstruction. The experimental results on 12 benchmark datasets show that the proposed method performs better than the existing methods. The proposed method ranks in the 1st place at 66.7% case and achieves optimal average rank in terms of all evaluation measures.
引用
收藏
页码:247 / 258
页数:11
相关论文
共 50 条
  • [1] Joint Label-Specific Features and Correlation Information for Multi-Label Learning
    Jia, Xiu-Yi
    Zhu, Sai-Sai
    Li, Wei-Wei
    [J]. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2020, 35 (02): : 247 - 258
  • [2] Joint label-specific features and label correlation for multi-label learning with missing label
    Ziwei Cheng
    Ziwei Zeng
    [J]. Applied Intelligence, 2020, 50 : 4029 - 4049
  • [3] Joint label-specific features and label correlation for multi-label learning with missing label
    Cheng, Ziwei
    Zeng, Ziwei
    [J]. APPLIED INTELLIGENCE, 2020, 50 (11) : 4029 - 4049
  • [4] Learning common and label-specific features for multi-Label classification with correlation information
    Li, Junlong
    Li, Peipei
    Hu, Xuegang
    Yu, Kui
    [J]. PATTERN RECOGNITION, 2022, 121
  • [5] Joint label completion and label-specific features for multi-label learning algorithm
    Wang, Yibin
    Zheng, Weijie
    Cheng, Yusheng
    Zhao, Dawei
    [J]. SOFT COMPUTING, 2020, 24 (09) : 6553 - 6569
  • [6] Joint label completion and label-specific features for multi-label learning algorithm
    Yibin Wang
    Weijie Zheng
    Yusheng Cheng
    Dawei Zhao
    [J]. Soft Computing, 2020, 24 : 6553 - 6569
  • [7] LIFT: Multi-Label Learning with Label-Specific Features
    Zhang, Min-Ling
    Wu, Lei
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (01) : 107 - 120
  • [8] Learning label-specific features with global and local label correlation for multi-label classification
    Weng, Wei
    Wei, Bowen
    Ke, Wen
    Fan, Yuling
    Wang, Jinbo
    Li, Yuwen
    [J]. APPLIED INTELLIGENCE, 2023, 53 (03) : 3017 - 3033
  • [9] Multi-label learning based on label-specific features and local pairwise label correlation
    Weng, Wei
    Lin, Yaojin
    Wu, Shunxiang
    Li, Yuwen
    Kang, Yun
    [J]. NEUROCOMPUTING, 2018, 273 : 385 - 394
  • [10] Learning label-specific features with global and local label correlation for multi-label classification
    Wei Weng
    Bowen Wei
    Wen Ke
    Yuling Fan
    Jinbo Wang
    Yuwen Li
    [J]. Applied Intelligence, 2023, 53 : 3017 - 3033