Functional k-sample problem when data are density functions

被引:0
|
作者
Pedro Delicado
机构
[1] Universitat Politècnica de Catalunya,Departament d’Estadística i Investigació Operativa
来源
Computational Statistics | 2007年 / 22卷
关键词
Analysis of Distance; Distance based inference; Functional ANOVA; Functional data analysis; Income distribution; Nonparametric density estimation; Permutation tests; Weighted sample;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with the k-sample problem for functional data when the observations are density functions. We introduce test procedures based on distances between pairs of density functions (L1 distance and Hellinger distance, among others). A simulation study is carried out to compare the practical behaviour of the proposed tests. Theoretical derivations have been done in order to allow weighted samples in the test procedures. The paper ends with a real data example: for a collection of European regions we estimate the regional relative income densities and then we test the significance of the country effect.
引用
收藏
页码:391 / 410
页数:19
相关论文
共 50 条