One-weight codes in some classes of group rings

被引:0
|
作者
Raul Antonio Ferraz
Ruth Nascimento Ferreira
机构
[1] Universidade de São Paulo,Departamento de Matemática
[2] Universidade Tecnológica Federal do Paraná,undefined
关键词
One weight codes; Cyclic group; Abelian group; 94B05;
D O I
暂无
中图分类号
学科分类号
摘要
Let Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q$$\end{document} be a finite field with q elements and G be a finite abelian group. In this work we gave conditions to ensure that a code in FqG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_qG$$\end{document} is a one-weight code in the case when G is a cyclic group with n elements, such that gcd(n,q)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {gcd}}(n,q) = 1$$\end{document}, and also when G is an abelian group.
引用
收藏
页码:299 / 309
页数:10
相关论文
共 50 条
  • [1] One-weight codes in some classes of group rings
    Ferraz, Raul Antonio
    Ferreira, Ruth Nascimento
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2021, 32 (03) : 299 - 309
  • [2] Relative one-weight linear codes
    Wood, Jay A.
    DESIGNS CODES AND CRYPTOGRAPHY, 2014, 72 (02) : 331 - 344
  • [3] Relative one-weight linear codes
    Jay A. Wood
    Designs, Codes and Cryptography, 2014, 72 : 331 - 344
  • [4] THE GEOMETRIC STRUCTURE OF RELATIVE ONE-WEIGHT CODES
    Liu, Zihui
    Zeng, Xiangyong
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2016, 10 (02) : 367 - 377
  • [5] One-weight Z4-linear codes
    Carlet, C
    CODING THEORY, CRYPTOGRAPHY AND RELATED AREAS, 2000, : 57 - 72
  • [6] The complete weight enumerator of the square of one-weight irreducible cyclic codes
    Zhu, Canze
    DESIGNS CODES AND CRYPTOGRAPHY, 2025,
  • [7] The geometry of one-weight codes in the sum-rank metric
    Neri, Alessandro
    Santonastaso, Paolo
    Zullo, Ferdinando
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2023, 194
  • [8] Two-weight cyclic codes constructed as the direct sum of two one-weight cyclic codes
    Vega, Gerardo
    FINITE FIELDS AND THEIR APPLICATIONS, 2008, 14 (03) : 785 - 797
  • [9] One-weight and two-weight ℤ2ℤ2[u, v] -additive codes
    Shi M.
    Wang C.
    Wu R.
    Hu Y.
    Chang Y.
    Shi, Minjia (smjwcl.good@163.com), 1600, Springer (12): : 443 - 454
  • [10] Optimal p-ary Codes from One-weight Linear Codes over Zpm
    Shi Minjia
    CHINESE JOURNAL OF ELECTRONICS, 2013, 22 (04): : 799 - 802