Boundary Behaviour and Taylor Coefficients of Besov Functions

被引:0
|
作者
J. B. Twomey
机构
[1] University College Cork,Mathematics Department
关键词
Analytic Besov spaces; Tangential limits; Radial variation; Boundary convergence of Taylor series; Exceptional sets; Primary 30D60; 30H25;
D O I
暂无
中图分类号
学科分类号
摘要
We derive an inclusion relation between Besov- and Dirichlet-type spaces of analytic functions in the unit disc U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U$$\end{document}, and investigate the tangential boundary behaviour and radial variation of functions in these spaces, outside exceptional subsets of ∂U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial U$$\end{document} of an appropriate capacity zero. We also deal with convergence results for the Taylor series of Besov-type functions on the boundary of U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U$$\end{document}.
引用
收藏
页码:541 / 557
页数:16
相关论文
共 50 条