Transfer learning radiomics based on multimodal ultrasound imaging for staging liver fibrosis

被引:0
|
作者
Li-Yun Xue
Zhuo-Yun Jiang
Tian-Tian Fu
Qing-Min Wang
Yu-Li Zhu
Meng Dai
Wen-Ping Wang
Jin-Hua Yu
Hong Ding
机构
[1] Zhongshan Hospital,Department of Ultrasound
[2] Fudan University,Department of Electronic Engineering
[3] Fudan University,undefined
[4] Shanghai Institute of Medical Imaging,undefined
来源
European Radiology | 2020年 / 30卷
关键词
Liver cirrhosis; Deep learning; Elasticity imaging techniques; Hepatitis B;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:2973 / 2983
页数:10
相关论文
共 50 条
  • [1] Transfer learning radiomics based on multimodal ultrasound imaging for staging liver fibrosis
    Xue, Li-Yun
    Jiang, Zhuo-Yun
    Fu, Tian-Tian
    Wang, Qing-Min
    Zhu, Yu-Li
    Dai, Meng
    Wang, Wen-Ping
    Yu, Jin-Hua
    Ding, Hong
    EUROPEAN RADIOLOGY, 2020, 30 (05) : 2973 - 2983
  • [2] Polarization imaging-based radiomics approach for the staging of liver fibrosis
    Yao, Yue
    Zhang, Fengdi
    Wang, Bin
    Wan, Jiachen
    Si, Lu
    Dong, Yang
    Zhu, Yuanhuan
    Liu, Xiaolong
    Chen, Lihong
    Ma, Hui
    BIOMEDICAL OPTICS EXPRESS, 2022, 13 (03) : 1564 - 1580
  • [3] Value of multimodal MRI radiomics and machine learning in predicting staging liver fibrosis and grading inflammatory activity
    Wei, Huanhuan
    Shao, Zehua
    Fu, Fangfang
    Yu, Xuan
    Wu, Yaping
    Bai, Yan
    Wei, Wei
    Meng, Nan
    Liu, Kewei
    Han, Hui
    Wang, Meiyun
    BRITISH JOURNAL OF RADIOLOGY, 2022, 96 (1141):
  • [4] The accurate non-invasive staging of liver fibrosis using deep learning radiomics based on transfer learning of shear wave elastography
    Zhou, Hui
    Wang, Kun
    Tian, Jie
    MEDICAL IMAGING 2020: ULTRASONIC IMAGING AND TOMOGRAPHY, 2020, 11319
  • [5] Liver Fibrosis Classification Based on Transfer Learning and FCNet for Ultrasound Images
    Meng, Dan
    Zhang, Libo
    Cao, Guitao
    Cao, Wenming
    Zhang, Guixu
    Hu, Bing
    IEEE ACCESS, 2017, 5 : 5804 - 5810
  • [6] Machine learning improves early detection of liver fibrosis by quantitative ultrasound radiomics
    Al-Hasani, Maryam
    Sultan, Laith R.
    Sagreiya, Hersh
    Cary, Theodore W.
    Karmacharya, Mrigendra B.
    Sehgal, Chandra M.
    2022 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IEEE IUS), 2022,
  • [7] The accurate noninvasive staging of liver fibrosis using deep learning radiomics: A prospective multicenter study
    Zhou, Hui
    Wang, Kun
    Tian, Jie
    CANCER RESEARCH, 2018, 78 (13)
  • [8] Role of radiomics in staging liver fibrosis: a meta-analysis
    Wang, Xiao-min
    Zhang, Xiao-jing
    BMC MEDICAL IMAGING, 2024, 24 (01)
  • [9] Liver Ultrasound Image Classification of Periductal Fibrosis Based on Transfer Learning and FCNet for Liver Ultrasound Images Analysis System
    Nonsakhoo, Woottichai
    Saiyod, Saiyan
    Sirisawat, Piyanat
    Suwanwerakamtorn, Rasamee
    Chamadol, Nittaya
    Khuntikeo, Narong
    2021 IEEE INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION, AND INTELLIGENT SYSTEMS (ICCCIS), 2021, : 569 - 575
  • [10] Quantification of ultrasound imaging in the staging of hepatic fibrosis
    Borro, Paolo
    Dellepiane, Silvana G.
    Pellicano, Rinaldo
    Gemme, Laura
    Fagoonee, Sharmila
    Testino, Gianni
    PANMINERVA MEDICA, 2018, 60 (02) : 44 - 51