On approximation of certain integral operators

被引:7
|
作者
Gupta V. [1 ]
Yadav R. [1 ]
机构
[1] Department of Mathematics, Netaji Subhas Institute of Technology, New Delhi 110078
关键词
Asymptotic formula; Lupas operators; Rate of convergence; Weighted approximation;
D O I
10.1007/s40306-014-0057-0
中图分类号
学科分类号
摘要
In the present paper we introduce the summation-integral type modified Lupas operators with weights of Beta basis functions. We define the operators in terms of hypergeometric series and, using such an approach, establish moments. Our main results are an asymptotic formula and an error estimate in terms of modulus of continuity and weighted approximation and rate of convergence for functions having bounded derivatives. © 2013 Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer.
引用
收藏
页码:193 / 203
页数:10
相关论文
共 50 条
  • [1] Approximation of functions by certain nonlinear integral operators
    L. Rempulska
    A. Thiel
    [J]. Lithuanian Mathematical Journal, 2008, 48 : 451 - 462
  • [2] Approximation of functions by certain nonlinear integral operators
    Rempulska, L.
    Thiel, A.
    [J]. LITHUANIAN MATHEMATICAL JOURNAL, 2008, 48 (04) : 451 - 462
  • [3] APPROXIMATION RESULTS BY CERTAIN GENUINE OPERATORS OF INTEGRAL TYPE
    Gupta, Vijay
    Agrawal, Deepika
    [J]. KRAGUJEVAC JOURNAL OF MATHEMATICS, 2018, 42 (03): : 335 - 348
  • [4] ON APPROXIMATION PROPERTIES OF CERTAIN NONCONVOLUTION INTEGRAL-OPERATORS
    BARDARO, C
    VINTI, G
    [J]. JOURNAL OF APPROXIMATION THEORY, 1990, 62 (03) : 358 - 371
  • [5] APPROXIMATION NUMBERS OF CERTAIN VOLTERRA INTEGRAL-OPERATORS
    EDMUNDS, DE
    EVANS, WD
    HARRIS, DJ
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1988, 37 : 471 - 489
  • [6] APPROXIMATION PROPERTIES OF CERTAIN SUMMATION INTEGRAL TYPE OPERATORS
    Patel, Prashantkumar
    Mishra, Vishnu Narayan
    [J]. DEMONSTRATIO MATHEMATICA, 2015, 48 (01) : 77 - 90
  • [7] APPROXIMATION PROPERTY OF CERTAIN NONLINEAR VOLTERRA INTEGRAL-OPERATORS
    BRUNNER, H
    [J]. MATHEMATIKA, 1976, 23 (45) : 45 - 50
  • [8] THE MEASURE OF NONCOMPACTNESS AND APPROXIMATION NUMBERS OF CERTAIN VOLTERRA INTEGRAL-OPERATORS
    EDMUNDS, DE
    STEPANOV, VD
    [J]. MATHEMATISCHE ANNALEN, 1994, 298 (01) : 41 - 66
  • [9] ON THE APPROXIMATION NUMBERS OF CERTAIN VOLTERRA INTEGRAL OPERATORS BETWEEN LEBESGUE SPACES
    Achache, Mohamed
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2007, 52 (01): : 3 - 23
  • [10] THE MEASURE OF NONCOMPACTNESS AND APPROXIMATION NUMBERS OF CERTAIN VOLTERRA INTEGRAL-OPERATORS
    STEPANOV, VD
    EDMUNDS, DE
    [J]. DOKLADY AKADEMII NAUK, 1993, 330 (06) : 700 - 703