A Numerical Study of Arnold Diffusion in a Priori Unstable Systems

被引:0
|
作者
Massimiliano Guzzo
Elena Lega
Claude Froeschlé
机构
[1] UNSA,Dipartimento di Matematica Pura ed Applicata
[2] CNRS UMR 6202,undefined
[3] Observatoire de Nice,undefined
[4] Università degli Studi di Padova,undefined
来源
关键词
Manifold; Lyapunov Exponent; Invariant Manifold; Unstable Manifold; Stable Manifold;
D O I
暂无
中图分类号
学科分类号
摘要
This paper concerns the problem of the numerical detection of Arnold diffusion in a priori unstable systems. Specifically, we introduce a new definition of Arnold diffusion which is adapted to the numerical investigation of the problem, and is based on the numerical computation of the stable and unstable manifolds of the system. Examples of this Arnold diffusion are provided in a model system. In this model, we also find that Arnold diffusion behaves as an approximate Markovian process, thus it becomes possible to compute diffusion coefficients. The values of the diffusion coefficients satisfy the scaling \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D(\epsilon)\simeq \epsilon^2}$$\end{document} . We also find that this law is correlated to the validity of the Melnikov approximation: in fact, the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D(\epsilon)\simeq \epsilon^2}$$\end{document} law is valid up to the same critical value of ε for which the error terms of Melnikov approximations have a sharp increment.
引用
收藏
页码:557 / 576
页数:19
相关论文
共 50 条
  • [1] A Numerical Study of Arnold Diffusion in a Priori Unstable Systems
    Guzzo, Massimiliano
    Lega, Elena
    Froeschle, Claude
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 290 (02) : 557 - 576
  • [2] ARNOLD DIFFUSION IN HAMILTONIAN SYSTEMS: A PRIORI UNSTABLE CASE
    Cheng, Chong-Qing
    Yan, Jun
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2009, 82 (02) : 229 - 277
  • [3] Gevrey genericity of Arnold diffusion in a priori unstable Hamiltonian systems
    Chen, Qinbo
    Cheng, Chong-Qing
    [J]. NONLINEARITY, 2021, 34 (01) : 455 - 508
  • [4] Geography of resonances and Arnold diffusion in a priori unstable Hamiltonian systems
    Delshams, Amadeu
    Huguet, Gemma
    [J]. NONLINEARITY, 2009, 22 (08) : 1997 - 2077
  • [5] Local and global diffusion in the Arnold web of a priori unstable systems
    Nataša Todorović
    Elena Lega
    Claude Froeschlé
    [J]. Celestial Mechanics and Dynamical Astronomy, 2008, 102 : 13 - 27
  • [6] Local and global diffusion in the Arnold web of a priori unstable systems
    Todorovic, Natasa
    Lega, Elena
    Froeschle, Claude
    [J]. CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2008, 102 (1-3): : 13 - 27
  • [7] Arnold's Diffusion: From the a priori Unstable to the a priori Stable Case
    Bernard, Patrick
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL III: INVITED LECTURES, 2010, : 1680 - 1700
  • [8] Arnold diffusion far from strong resonances in multidimensional a priori unstable Hamiltonian systems
    Treschev, D.
    [J]. NONLINEARITY, 2012, 25 (09) : 2717 - 2757
  • [9] Existence of diffusion orbits in a priori unstable Hamiltonian systems
    Cheng, CQ
    Yan, J
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2004, 67 (03) : 457 - 517
  • [10] A numerical study of the hyperbolic manifolds in a priori unstable systems. A comparison with Melnikov approximations
    Lega, Elena
    Guzzo, Massimiliano
    Froeschle, Claude
    [J]. CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2010, 107 (1-2): : 115 - 127