Some Inequalities for Analytic Functions in the Unit Disc

被引:0
|
作者
Mamoru Nunokawa
Janusz Sokół
机构
[1] University of Gunma,Faculty of Mathematics and Natural Sciences with College of Natural Sciences
[2] University of Rzeszów,undefined
关键词
Univalent functions; Starlike; Convex; Starlike of order alpha; Primary 30C45; Secondary 30C80;
D O I
暂无
中图分类号
学科分类号
摘要
In Ozaki (Sci Rep Tokyo Bunrika Daigaku Sect A 4:45–87, 1941) proved that if f(z)=z+a2z2+a3z3+⋯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(z)=z+a_2z^2+a_3z^3+\cdots$$\end{document} is analytic in D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}$$\end{document}, f′(z)≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f'(z)\ne 0$$\end{document} on |z|=r<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|z|=r<1$$\end{document}, then the total variation of arg{f(z)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\arg \{f(z)\}$$\end{document} on |z|=r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|z|=r$$\end{document} is not greater than the total variation of arg{df(z)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\arg \{\mathrm{d}f(z)\}$$\end{document} on |z|=r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|z|=r$$\end{document}, namely ∀0<r<1:∫|z|=rdarg{f(z)}≤∫|z|=rdarg{df(z)}.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \forall 0<r<1: \int _{|z|=r}\left| \mathrm{d}\arg \{f(z)\}\right| \le \int _{|z|=r}\left| \mathrm{d}\arg \{\mathrm{d}f(z)\}\right| . \end{aligned}$$\end{document}We prove that without the integrals the above inequality implies f(z)=z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(z)=z$$\end{document}. Furthermore, we prove that if f′(z)≺((1+z)/(1-z))2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f'(z)\prec ((1+z)/(1-z))^2$$\end{document}, then f(z) is starlike in |z|<0.24…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|z|<0.24\ldots$$\end{document}.
引用
收藏
页码:773 / 777
页数:4
相关论文
共 50 条