Stochastic dynamics of an SEIS epidemic model

被引:0
|
作者
Bo Yang
机构
[1] Lanzhou University of Arts and Science,School of Digital Media
关键词
epidemic model; disease-free; endemic; exponential stability;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the stochastic disease dynamics of an SEIS epidemic model with latent patients and active patients. The two parameters R0s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{0}^{s}$\end{document} and R0∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{0}^{*}$\end{document} are identified as the disease-free and endemic dynamics of the model. More specifically, we give the almost surely exponential stability of the disease-free equilibrium in terms of R0s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{0}^{s}$\end{document}, and stochastic endemic dynamics in terms of R0∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{0}^{*}$\end{document}. The theoretical and numerical results may be useful for studying the dynamics of disease spreading in a randomly fluctuating environment.
引用
收藏
相关论文
共 50 条
  • [1] Stochastic dynamics of an SEIS epidemic model
    Yang, Bo
    ADVANCES IN DIFFERENCE EQUATIONS, 2016,
  • [2] Dynamics of stochastic SEIS epidemic model with varying population size
    Liu, Jiamin
    Wei, Fengying
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 464 : 241 - 250
  • [3] THE DYNAMICS AND THERAPEUTIC STRATEGIES OF A SEIS EPIDEMIC MODEL
    Meng, Xinzhu
    Wu, Zhitao
    Zhang, Tongqian
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2013, 6 (05)
  • [4] Threshold Dynamics of an SEIS Epidemic Model with Nonlinear Incidence Rates
    Naim, Mouhcine
    Lahmidi, Fouad
    Namir, Abdelwahed
    DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2024, 32 (02) : 505 - 518
  • [5] Analysis of a stochastic SEIS epidemic model with the standard Brownian motion and Levy jump
    Hammouch, Zakia
    Hama, Mudhafar F.
    Rasul, Rando R. Q.
    Rasul, Kawa A. H.
    Danane, Jaouad
    RESULTS IN PHYSICS, 2022, 37
  • [6] Global dynamics of an SEIS epidemic model with saturation incidence and latent period
    Xu, Rui
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (15) : 7927 - 7938
  • [7] DENSITY FUNCTION ANALYSIS FOR A STOCHASTIC SEIS EPIDEMIC MODEL WITH NON-DEGENERATE DIFFUSION
    Liu, Qun
    Chen, Qingmei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (08): : 4359 - 4373
  • [8] Dynamics of a stochastic heroin epidemic model
    Liu, Shitao
    Zhang, Liang
    Xing, Yifan
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 351 : 260 - 269
  • [9] Analysis of an SEIS Epidemic Model with a Changing Delitescence
    Wang, Jinghai
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [10] Dynamics of SEIS epidemic models with varying population size
    Hui, Jing
    Zhu, De-Ming
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (05): : 1513 - 1529