Abelian Group;
Random Graph;
Arithmetic Progression;
Threshold Function;
London Mathematical Society;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We characterize the structure of maximum-size sum-free subsets of a random subset of an abelian group G. In particular, we determine the threshold above which, with high probability as |G| → ∞, each such subset is contained in some maximum-size sum-free subset of G, whenever q divides |G| for some (fixed) prime q with q ≡ 2 (mod 3). Moreover, in the special case G = ℤ2n, we determine the sharp threshold for the above property. The proof uses recent ‘transference’ theorems of Conlon and Gowers, together with stability theorems for sum-free sets of abelian groups.
机构:
Univ Illinois, Dept Math, Urbana, IL 61801 USA
Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USAUniv Illinois, Dept Math, Urbana, IL 61801 USA
Balogh, Jozsef
Morris, Robert
论文数: 0引用数: 0
h-index: 0
机构:
IMPA, Jardim Bot, Rio De Janeiro, RJ, BrazilUniv Illinois, Dept Math, Urbana, IL 61801 USA
Morris, Robert
Samotij, Wojciech
论文数: 0引用数: 0
h-index: 0
机构:
Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
Univ Cambridge Trinity Coll, Cambridge CB2 1TQ, EnglandUniv Illinois, Dept Math, Urbana, IL 61801 USA
机构:
Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, IsraelTel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
Alon, Noga
Balogh, Jozsef
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Math, Urbana, IL 61801 USATel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
Balogh, Jozsef
Morris, Robert
论文数: 0引用数: 0
h-index: 0
机构:
IMPA, Jardim Bot, Rio De Janeiro, RJ, BrazilTel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
Morris, Robert
Samotij, Wojciech
论文数: 0引用数: 0
h-index: 0
机构:
Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
Univ Cambridge Trinity Coll, Cambridge CB2 1TQ, EnglandTel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel