Random sum-free subsets of abelian groups

被引:0
|
作者
József Balogh
Robert Morris
Wojciech Samotij
机构
[1] University of Illinois,Department of Mathematics
[2] University of California San Diego,Department of Mathematics
[3] IMPA,School of Mathematical Sciences
[4] Tel Aviv University,undefined
[5] Trinity College,undefined
来源
关键词
Abelian Group; Random Graph; Arithmetic Progression; Threshold Function; London Mathematical Society;
D O I
暂无
中图分类号
学科分类号
摘要
We characterize the structure of maximum-size sum-free subsets of a random subset of an abelian group G. In particular, we determine the threshold above which, with high probability as |G| → ∞, each such subset is contained in some maximum-size sum-free subset of G, whenever q divides |G| for some (fixed) prime q with q ≡ 2 (mod 3). Moreover, in the special case G = ℤ2n, we determine the sharp threshold for the above property. The proof uses recent ‘transference’ theorems of Conlon and Gowers, together with stability theorems for sum-free sets of abelian groups.
引用
收藏
页码:651 / 685
页数:34
相关论文
共 50 条
  • [1] Random sum-free subsets of abelian groups
    Balogh, Jozsef
    Morris, Robert
    Samotij, Wojciech
    ISRAEL JOURNAL OF MATHEMATICS, 2014, 199 (02) : 651 - 685
  • [2] On Sum-Free Subsets of Abelian Groups
    de Amorim, Renato Cordeiro
    AXIOMS, 2023, 12 (08)
  • [3] Sum-free subsets of finite abelian groups of type III
    Balasubramanian, R.
    Prakash, Gyan
    Ramana, D. S.
    EUROPEAN JOURNAL OF COMBINATORICS, 2016, 58 : 181 - 202
  • [4] Sum-free sets in abelian groups
    Lev, VF
    Luczak, T
    Schoen, T
    ISRAEL JOURNAL OF MATHEMATICS, 2001, 125 (1) : 347 - 367
  • [5] Sum-free sets in abelian groups
    Ben Green
    Imre Z. Ruzsa
    Israel Journal of Mathematics, 2005, 147 : 157 - 188
  • [6] Sum-free sets in abelian groups
    Vsevolod F. Lev
    Tomasz Łuczak
    Tomasz Schoen
    Israel Journal of Mathematics, 2001, 125 : 347 - 367
  • [7] Sum-free sets in abelian groups
    Green, B
    ISRAEL JOURNAL OF MATHEMATICS, 2005, 147 (1) : 157 - 188
  • [8] Counting sum-free sets in abelian groups
    Noga Alon
    József Balogh
    Robert Morris
    Wojciech Samotij
    Israel Journal of Mathematics, 2014, 199 : 309 - 344
  • [9] On Maximal Sum-Free Sets in Abelian Groups
    Hassler, Nathanael
    Treglown, Andrew
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (02): : 1 - 24
  • [10] Counting sum-free sets in abelian groups
    Alon, Noga
    Balogh, Jozsef
    Morris, Robert
    Samotij, Wojciech
    ISRAEL JOURNAL OF MATHEMATICS, 2014, 199 (01) : 309 - 344