Rigidity of proper holomorphic mappings between nonequidimensional bounded symmetric domains

被引:0
|
作者
Zhen-Han Tu
机构
[1] Department of Mathematics,
[2] The University of Hong Kong,undefined
[3] Pokfulam Road,undefined
[4] Hong Kong (e-mail: Tuzhenhan@yahoo.com) ,undefined
来源
Mathematische Zeitschrift | 2002年 / 240卷
关键词
Mathematics Subject Classification (2000): 32H02, 32M15;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that any proper holomorphic mapping from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $D_{p,p-1}^I$\end{document} to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ D_{p,p}^I(p\geq 3)$\end{document} is necessarily a totally geodesic isometric embedding with respect to their Bergman metrics and therefore is the standard linear embedding up to their automorphisms. The proof of the main result in this paper will be achieved by a differential-geometric study of a special class of complex geodesic curves on the bounded symmetric domains with respect to their Bergman metrics.
引用
收藏
页码:13 / 35
页数:22
相关论文
共 50 条