We present a new trust-region algorithm for solving nonlinear equality constrained optimization problems. Quadratic penalty functions are employed to obtain global convergence. At each iteration a local change of variables is performed to improve the ability of the algorithm to follow the constraint level set. Under certain assumptions we prove that this algorithm globally converges to a point satisfying the second-order necessary optimality conditions. Results of preliminary numerical experiments are reported.
机构:
Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
Niu, Lingfeng
Yuan, Yaxiang
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
机构:
Departamento de Matemática, Universidade Federal do Paraná, Centro Politécnico, Cx. postal 19.081, 81531-980 Curitiba, Paraná
The Capes Foundation, Ministry of Education of Brazil, Cx. postal 250, 70.040-020 Brasília, Distrito FederalDepartamento de Matemática, Universidade Federal do Paraná, Centro Politécnico, Cx. postal 19.081, 81531-980 Curitiba, Paraná
Grapiglia G.N.
Yuan J.
论文数: 0引用数: 0
h-index: 0
机构:
Departamento de Matemática, Universidade Federal do Paraná, Centro Politécnico, Cx. postal 19.081, 81531-980 Curitiba, ParanáDepartamento de Matemática, Universidade Federal do Paraná, Centro Politécnico, Cx. postal 19.081, 81531-980 Curitiba, Paraná
Yuan J.
Yuan Y.-X.
论文数: 0引用数: 0
h-index: 0
机构:
State Key Laboratory of Scientific/Engineering Computing, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Zhongguancundonglu 55, BeijingDepartamento de Matemática, Universidade Federal do Paraná, Centro Politécnico, Cx. postal 19.081, 81531-980 Curitiba, Paraná