Multiple closed geodesics on Riemannian 3-spheres

被引:0
|
作者
Yiming Long
Wei Wang
机构
[1] Nankai University,Chern Institute of Mathematics
[2] Nankai University,Key Lab of Pure Mathematics and Combinatorics of Ministry of Education
关键词
58E10; 53C22; 37C27;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove that for every Riemannian Q-homological 3-sphere (M, g) with injectivity radius \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$inj(M)\ge \pi$$\end{document} and the sectional curvature K satisfying \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{1}{16} < K \le 1}$$\end{document} there exist at least two geometrically distinct closed geodesics.
引用
收藏
页码:183 / 214
页数:31
相关论文
共 50 条