The Average Behavior of Fourier Coefficients of Symmetric Power L-Functions

被引:0
|
作者
Huafeng Liu
机构
[1] Shandong Normal University,School of Mathematics and Statistics
关键词
Fourier coefficients; Symmetric power ; -functions; 11F30; 11F66;
D O I
暂无
中图分类号
学科分类号
摘要
Let Hk∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_k^*$$\end{document} be the set of all normalized primitive holomorphic cusp forms of even weight k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2$$\end{document} for SL2(Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SL_2(\mathbb {Z})$$\end{document}. For f∈Hk∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in H_k^*$$\end{document}, let λsymjf(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{\textrm{sym}^jf}(n)$$\end{document} be the nth normalized Fourier coefficient of the jth symmetric power L-function attached to f. In this paper, we establish asymptotic formulas for the power sums of λsymjf(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{\textrm{sym}^jf}(n)$$\end{document} and improve previous results.
引用
收藏
相关论文
共 50 条