Variational solutions to nonlinear stochastic differential equations in Hilbert spaces

被引:0
|
作者
Viorel Barbu
Michael Röckner
机构
[1] Octav Mayer Institute of Mathematics of Romanian Academy,Fakultät für Mathematik
[2] Universität Bielefeld,undefined
[3] Academy of Mathematics and System Sciences,undefined
[4] CAS,undefined
关键词
Brownian motion; Maximal monotone operator; Subdifferential; Random differential equation; Minimization problem; Primary 60H15; Secondary 47H05; 47J05;
D O I
暂无
中图分类号
学科分类号
摘要
One introduces a new variational concept of solution for the stochastic differential equation dX+A(t)Xdt+λXdt=XdW,t∈(0,T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$dX+A(t)X\,dt+{\lambda }X\,dt=X\,dW, t\in (0,T)$$\end{document}; X(0)=x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X(0)=x$$\end{document} in a real Hilbert space where A(t)=∂φ(t),t∈(0,T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A(t)={\partial }{\varphi }(t), t\in (0,T)$$\end{document}, is a maximal monotone subpotential operator in H while W is a Wiener process in H on a probability space {Ω,F,P}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{{\Omega },{\mathcal {F}},\mathbb {P}\}$$\end{document}. In this new context, the solution X=X(t,x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X=X(t,x)$$\end{document} exists for each x∈H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in H$$\end{document}, is unique, and depends continuously on x. This functional scheme applies to a general class of stochastic PDE so far not covered by the classical variational existence theory (Krylov and Rozovskii in J Sov Math 16:1233–1277, 1981; Liu and Röckner in Stochastic partial differential equations: an introduction, Springer, Berlin, 2015; Pardoux in Equations aux dérivées partielles stochastiques nonlinéaires monotones, Thèse, Orsay, 1972) and, in particular, to stochastic variational inequalities and parabolic stochastic equations with general monotone nonlinearities with low or superfast growth to +∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+\infty $$\end{document}.
引用
收藏
页码:500 / 524
页数:24
相关论文
共 50 条