Uniqueness of the de Sitter spacetime among static vacua with positive cosmological constant

被引:0
|
作者
Oussama Hijazi
Sebastián Montiel
Simon Raulot
机构
[1] Université de Lorraine,Institut Élie Cartan de Lorraine
[2] Universidad de Granada,Departamento de Geometría y Topología
[3] UMR 6085 CNRS-Université de Rouen,Laboratoire de Mathématiques R. Salem
来源
关键词
Static vacuum; De Sitter spacetime; Killing horizon; Dirac operator; Differential Geometry; Global Analysis; 53C27; 53C40; 53C80; 58G25;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that, among all (n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n+1)$$\end{document}-dimensional spin static vacua with positive cosmological constant, the de Sitter spacetime is characterized by the fact that its spatial Killing horizons have minimal modes for the Dirac operator. As a consequence, the de Sitter spacetime is the only vacuum of this type for which the induced metric tensor on some of its Killing horizons is at least equal to that of a round (n-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n-1)$$\end{document}-sphere. This extends uniqueness theorems shown in Boucher et al. (Phys Rev D 30:2447, 1984). Chruściel [2]. to more general horizon metrics and to the non-single horizon case.
引用
收藏
页码:167 / 178
页数:11
相关论文
共 50 条