New optimality conditions for quadratic optimization problems with binary constraints

被引:0
|
作者
Yong Xia
机构
[1] Beihang University,Department of Applied Mathematics, LMIB of the Ministry of Education
[2] Central University of Finance and Economics,CIAS
来源
Optimization Letters | 2009年 / 3卷
关键词
Quadratic programming; Optimality conditions; Nonconvex optimization; Integer programming;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we obtain new sufficient optimality conditions for the nonconvex quadratic optimization problems with binary constraints by exploring local optimality conditions. The relation between the optimal solution of the problem and that of its continuous relaxation is further extended.
引用
收藏
页码:253 / 263
页数:10
相关论文
共 50 条
  • [1] New optimality conditions for quadratic optimization problems with binary constraints
    Xia, Yong
    [J]. OPTIMIZATION LETTERS, 2009, 3 (02) : 253 - 263
  • [2] Global optimality conditions for quadratic optimization problems with binary constraints
    Beck, A
    Teboulle, M
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2000, 11 (01) : 179 - 188
  • [3] Optimality conditions for optimization problems with complementarity constraints
    Ye, JJ
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1999, 9 (02) : 374 - 387
  • [4] Global optimality conditions for nonconvex minimization problems with quadratic constraints
    Guoquan Li
    Zhiyou Wu
    Jing Quan
    [J]. Journal of Inequalities and Applications, 2015
  • [5] Conditions for global optimality of quadratic minimization problems with lmi constraints
    Jeyakumar, Vaithilingam
    Wu, Zhiyou
    [J]. ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2007, 24 (02) : 149 - 160
  • [6] Global optimality conditions for nonconvex minimization problems with quadratic constraints
    Li, Guoquan
    Wu, Zhiyou
    Quan, Jing
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [7] Non-convex quadratic minimization problems with quadratic constraints: global optimality conditions
    Jeyakumar, V.
    Rubinov, A. M.
    Wu, Z. Y.
    [J]. MATHEMATICAL PROGRAMMING, 2007, 110 (03) : 521 - 541
  • [8] Non-convex quadratic minimization problems with quadratic constraints: global optimality conditions
    V. Jeyakumar
    A. M. Rubinov
    Z. Y. Wu
    [J]. Mathematical Programming, 2007, 110 : 521 - 541
  • [9] Global Optimality Conditions and Optimization Methods for Quadratic Knapsack Problems
    Z. Y. Wu
    Y. J. Yang
    F. S. Bai
    M. Mammadov
    [J]. Journal of Optimization Theory and Applications, 2011, 151 : 241 - 259
  • [10] Global Optimality Conditions and Optimization Methods for Quadratic Knapsack Problems
    Wu, Z. Y.
    Yang, Y. J.
    Bai, F. S.
    Mammadov, M.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 151 (02) : 241 - 259