Embedding theorem for weighted Sobolev classes with weights that are functions of the distance to some h-set

被引:0
|
作者
A. A. Vasil’eva
机构
关键词
Mathematical Physic; Function Space; VASIL; Besov Space; Hardy Inequality;
D O I
暂无
中图分类号
学科分类号
摘要
The paper continues the first part (Russ. J. Math. Phys. 20 (3), 360–373). Let Ω be a John domain, let Γ ⊂ ∂Ω be an h-set, and let g and υ be weights on Ω that are distance functions to the set Γ of special form. In the paper, sufficient conditions are obtained under which the Sobolev weighted class Wp,gr(Ω) is continuously embedded in the space Lq,v(Ω). Moreover, bounds for the approximation of functions in Wp,gr(Ω) by polynomials of degree not exceeding r − 1 in Lq,v(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde \Omega $\end{document}) are found, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde \Omega $\end{document} is a subdomain generated by a subtree of the tree T defining the structure of Ω.
引用
收藏
页码:112 / 122
页数:10
相关论文
共 50 条