Linking the rotation of a rigid body to the Schrödinger equation: The quantum tennis racket effect and beyond

被引:0
|
作者
L. Van Damme
D. Leiner
P. Mardešić
S. J. Glaser
D. Sugny
机构
[1] UMR 5584 CNRS-Université de Bourgogne Franche-Comté,Institut de Mathématiques de Bourgogne
[2] Technical University of Munich,Department of Chemistry
[3] UMR 5209 CNRS-Université Bourgogne Franche Comté,Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB)
[4] Technical University of Munich,Institute for Advanced Study
[5] Lichtenbergstrasse 2 a,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The design of efficient and robust pulse sequences is a fundamental requirement in quantum control. Numerical methods can be used for this purpose, but with relatively little insight into the control mechanism. Here, we show that the free rotation of a classical rigid body plays a fundamental role in the control of two-level quantum systems by means of external electromagnetic pulses. For a state to state transfer, we derive a family of control fields depending upon two free parameters, which allow us to adjust the efficiency, the time and the robustness of the control process. As an illustrative example, we consider the quantum analog of the tennis racket effect, which is a geometric property of any classical rigid body. This effect is demonstrated experimentally for the control of a spin 1/2 particle by using techniques of Nuclear Magnetic Resonance. We also show that the dynamics of a rigid body can be used to implement one-qubit quantum gates. In particular, non-adiabatic geometric quantum phase gates can be realized based on the Montgomery phase of a rigid body. The robustness issue of the gates is discussed.
引用
收藏
相关论文
共 50 条
  • [1] Linking the rotation of a rigid body to the Schrodinger equation: The quantum tennis racket effect and beyond
    Van Damme, L.
    Leiner, D.
    Mardesic, P.
    Glaser, S. J.
    Sugny, D.
    SCIENTIFIC REPORTS, 2017, 7
  • [2] The tennis racket effect in a three-dimensional rigid body
    Van Damme, Leo
    Mardesic, Pavao
    Sugny, Dominique
    PHYSICA D-NONLINEAR PHENOMENA, 2017, 338 : 17 - 25
  • [3] Threshold for Blowup and Stability for Nonlinear Schrödinger Equation with Rotation
    Nyla Basharat
    Hichem Hajaiej
    Yi Hu
    Shijun Zheng
    Annales Henri Poincaré, 2023, 24 : 1377 - 1416
  • [4] Linking life to the quantum—Schrödinger’s views revisited
    N. Mukunda
    Journal of Genetics, 1999, 78 : 71 - 72
  • [5] A fast algorithm for the Schrödinger equation in quaternionic quantum mechanics
    Jiang, Tongsong
    Guo, Zhenwei
    Zhang, Dong
    Vasil'ev, V. I.
    APPLIED MATHEMATICS LETTERS, 2024, 150
  • [6] Quantum Monodromy in the Spectrum of Schrödinger Equation with a Decatic Potential
    Shi-Hai Dong
    International Journal of Theoretical Physics, 2002, 41 : 89 - 99
  • [7] From Schrödinger’s equation to the quantum search algorithm
    Lov K Grover
    Pramana, 2001, 56 : 333 - 348
  • [8] Approximation Theorems for the Schrödinger Equation and Quantum Vortex Reconnection
    Alberto Enciso
    Daniel Peralta-Salas
    Communications in Mathematical Physics, 2021, 387 : 1111 - 1149
  • [9] Dilaton Quantum Cosmology with a Schrödinger-like Equation
    J. C. Fabris
    F. T. Falciano
    J. Marto
    N. Pinto-Neto
    P. Vargas Moniz
    Brazilian Journal of Physics, 2012, 42 : 475 - 481
  • [10] Quantum Gravity Equation In Schrödinger Form In Minisuperspace Description
    S. Biswas
    A. Shaw
    B. Modak
    D. Biswas
    General Relativity and Gravitation, 2000, 32 : 2167 - 2187