Pressure type metrics on spaces of metric graphs

被引:0
|
作者
Lien-Yung Kao
机构
[1] University of Notre Dame,Department of Mathematics
来源
Geometriae Dedicata | 2017年 / 187卷
关键词
Metric graph; Weil–Peterss metric; Thermodyamic formalism; 05C25; 37C30; 37D35;
D O I
暂无
中图分类号
学科分类号
摘要
In this note, we consider two Riemannian metrics on a moduli space of metric graphs. Each of them could be thought of as an analogue of the Weil–Petersson metric on the moduli space of metric graphs. We discuss and compare geometric features of these two metrics with the “classic” Weil–Petersson metric in Teichmüller theory. This paper is motivated by Pollicott and Sharp’s work (Pollicott and Sharp in Geom Dedic 172(1):229–244, 2014). Moreover, we fix some errors in Pollicott and Sharp (2014).
引用
收藏
页码:151 / 177
页数:26
相关论文
共 50 条
  • [1] Pressure type metrics on spaces of metric graphs
    Kao, Lien-Yung
    GEOMETRIAE DEDICATA, 2017, 187 (01) : 151 - 177
  • [2] A Weil–Petersson type metric on spaces of metric graphs
    Mark Pollicott
    Richard Sharp
    Geometriae Dedicata, 2014, 172 : 229 - 244
  • [3] A Weil-Petersson type metric on spaces of metric graphs
    Pollicott, Mark
    Sharp, Richard
    GEOMETRIAE DEDICATA, 2014, 172 (01) : 229 - 244
  • [4] COMPLETING GRAPHS TO METRIC SPACES
    Aranda, Andres
    Bradley-Williams, David
    Hng, Eng Keat
    Hubicka, Jan
    Karamanlis, Miltiadis
    Kompatscher, Michael
    Konecny, Matej
    Pawliuk, Micheal
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2021, 16 (02) : 71 - 89
  • [5] FUZZY METRICS AND STATISTICAL METRIC SPACES
    KRAMOSIL, I
    MICHALEK, J
    KYBERNETIKA, 1975, 11 (05) : 336 - 344
  • [6] Contractive Mappings on Metric Spaces with Graphs
    Reich, Simeon
    Zaslavski, Alexander J.
    MATHEMATICS, 2021, 9 (21)
  • [7] On Balanced Cuts of Graphs in Metric Spaces
    Baushev, A. N.
    Adadurov, S. E.
    Osminin, A. T.
    Osminin, M. A.
    PROCEEDINGS OF 2017 XX IEEE INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND MEASUREMENTS (SCM), 2017, : 177 - 178
  • [8] UNIFIED APPROACH TO GRAPHS AND METRIC SPACES
    Pavlik, Jan
    MATHEMATICA SLOVACA, 2017, 67 (05) : 1213 - 1238
  • [9] Cartesian products of graphs and metric spaces
    Avgustinovich, S
    Fon-der-Flaass, D
    EUROPEAN JOURNAL OF COMBINATORICS, 2000, 21 (07) : 847 - 851
  • [10] Universality and randomness for the graphs and metric spaces
    Vershik, AM
    FRONTIERS IN NUMBER THEORY, PHYSICS AND GEOMETRY I: ON RANDOM MATRICES, ZETA FUNCTIONS, AND DYNAMICAL SYSTEMS, 2006, : 245 - 266