The eigenvalue characterization for the constant sign Green’s functions of (k,n−k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(k,n-k)$\end{document} problems

被引:0
|
作者
Alberto Cabada
Lorena Saavedra
机构
[1] Universidade de Santiago de Compostela,Departamento de Análise Matemática, Facultade de Matemáticas
关键词
th order boundary value problem; Green’s functions; disconjugation; maximum principles; spectral theory; 34B05; 34B08; 34B09; 34B27; 34C10;
D O I
10.1186/s13661-016-0547-1
中图分类号
学科分类号
摘要
This paper is devoted to the study of the sign of the Green’s function related to a general linear nth-order operator, depending on a real parameter, Tn[M]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{n}[M]$\end{document}, coupled with the (k,n−k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(k,n-k)$\end{document} boundary value conditions.
引用
收藏
相关论文
共 50 条