A new hysteresis model based on Weibull cumulative distribution function and Jiles–Atherton hysteresis model

被引:0
|
作者
Guangming Xue
Hongbai Bai
Tuo Li
Zhiying Ren
Zhangbin Wu
机构
[1] Fuzhou University,School of Mechanical Engineering and Automation
[2] Officers College of PAP,Department of Unit Command
来源
Nonlinear Dynamics | 2024年 / 112卷
关键词
Hysteresis; Cumulative distribution function; Jiles–Atherton model; Parameter determination; Parametric analysis;
D O I
暂无
中图分类号
学科分类号
摘要
Built on Weibull cumulative distribution function and the hysteresis rule of Jiles–Atherton model, this paper proposes a new hysteresis function suitable for modeling the hysteretic characteristics. After the domain of definition expanded, the cumulative distribution function of a two-parameter Weibull distribution is employed to describe the skeleton curve of the hysteresis. A simplified energy conversion equation based on Jiles–Atherton model is then presented to describe the loop curve. The proposed hysteresis model is solved by the predictor–corrector method. From calculation results, the model is capable of providing abundant descriptions of hysteresis and approximating some hysteresis with low deviations. Parameter determination method is given based on the principle of minimizing the calculation deviations between the proposed model and Jiles–Atherton model. Then the deviations are comprehensively discussed under wider value range when the magnetic fields are not lower than the specified values. At last, the parametric analysis, mainly the loop parameters on hysteresis curve, maximum value and loop area, is completed. With simpler expression and clearer parameter influence compared with the Jiles–Atherton model, the model is suitable for modeling various types of hysteretic systems, especially the system with a magnetic hysteresis.
引用
收藏
页码:6403 / 6420
页数:17
相关论文
共 50 条
  • [1] A new hysteresis model based on Weibull cumulative distribution function and Jiles-Atherton hysteresis model
    Xue, Guangming
    Bai, Hongbai
    Li, Tuo
    Ren, Zhiying
    Wu, Zhangbin
    NONLINEAR DYNAMICS, 2024, 112 (8) : 6403 - 6420
  • [2] Vectorized Jiles-Atherton hysteresis model
    Szymanski, G
    Waszak, M
    PHYSICA B-CONDENSED MATTER, 2004, 343 (1-4) : 26 - 29
  • [3] Clockwise Jiles-Atherton Hysteresis Model
    Andrei, Petru
    Dimian, Mihai
    IEEE TRANSACTIONS ON MAGNETICS, 2013, 49 (07) : 3183 - 3186
  • [5] Introducing a domain flexing function in the Jiles-Atherton hysteresis model
    Miljavec, Damijan
    Zidaric, Bogomir
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2008, 320 (05) : 763 - 768
  • [6] Inverse Jiles-Atherton vector hysteresis model
    Leite, JV
    Sadowski, N
    Kuo-Peng, P
    Batistela, NJ
    Bastos, JPA
    de Espíndola, AA
    IEEE TRANSACTIONS ON MAGNETICS, 2004, 40 (04) : 1769 - 1775
  • [7] The Jiles Atherton Model for Description Of Hysteresis in Lithium Battery
    Trapanese, Marco
    Franzitta, Vincenzo
    Viola, Alessia
    2013 TWENTY-EIGHTH ANNUAL IEEE APPLIED POWER ELECTRONICS CONFERENCE AND EXPOSITION (APEC 2013), 2013, : 2773 - 2775
  • [8] A Modified Vector Jiles-Atherton Hysteresis Model for the Design of Hysteresis Devices
    Chen, Jinqiao
    Shang, Huidong
    Xia, Dong
    Wang, Shuang
    Peng, Tao
    Zang, Chunyan
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2023, 38 (03) : 1827 - 1835
  • [9] A simple vector generalization of the Jiles-Atherton model of hysteresis
    Bergqvist, AJ
    IEEE TRANSACTIONS ON MAGNETICS, 1996, 32 (05) : 4213 - 4215
  • [10] Modelling of a hysteresis motor using the Jiles-Atherton model
    Benabou, A
    Bouaziz, L
    Clénet, S
    EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2005, 29 (03): : 259 - 265