Intelligent modeling of unconfined compressive strength (UCS) of hybrid cement-modified unsaturated soil with nanostructured quarry fines inclusion

被引:0
|
作者
Kennedy C. Onyelowe
Fazal E. Jalal
Mudassir Iqbal
Zia Ur Rehman
Kizito Ibe
机构
[1] Michael Okpara University of Agriculture,Department of Civil Engineering
[2] Kampala International University,Department of Civil and Mechanical Engineering
[3] Shanghai Jiao Tong University,Department of Civil Engineering
[4] Shanghai Jiao Tong University,Shanghai Key Laboratory for Digital Maintenance of Buildings and Infrastructure, School of Naval Architecture, Ocean and Civil Engineering
[5] University of Engineering and Technology,Department of Civil Engineering
[6] University of Engineering and Technology (UET),Department of Civil Engineering
[7] Michael Okpara University of Agriculture,Department of Civil Engineering
来源
关键词
Intelligent modeling, unconfined compressive strength (UCS); Multiple predictors; Gene expression programming (GEP); Multiple linear regression and multi-expression programming (MEP); Nanostructured quarry fines (NQF);
D O I
暂无
中图分类号
学科分类号
摘要
Gene expression programming (GEP) and multi-expression programming (MEP) have been employed to predict models for the unconfined compressive strength of soil under unsaturated (partially saturated to 60%) conditions. Due to the complexity and time consumed during the laboratory estimation of UCS for flexible pavement subgrade design, there is a great need to employ prediction models to overcome this setback. Soils are erratic and change from time to time and from season to season especially unsaturated soils. Therefore, this behavior poses a big problem to the design and performance monitoring of foundations subjected to hydraulically bound effects. The soil belonged to A-7–6 group in the AASHTO method of classification and poorly graded. It was also observed to be highly plastic with high clay content (CH). The soil was treated with hybrid cement (HC); a composite binder made from the blend of rice husk ash and hydrated lime as activator and nanostructured quarry fines (NQF); another binder sourced from pulverized quarry dust sieved with 200-nm sieves to achieve fineness. Multiple experiments were conducted to generate datasets of the selected parameters, which were the predictors of the model exercise. A baseline regression model was conducted using the MLR to ascertain the level of agreement between the target variable and its multiple predictors (HC, NQF, C, AC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A}_{C}$$\end{document}, CC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C}_{C}$$\end{document}, Cu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C}_{u}$$\end{document}, δmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\delta }_{max}$$\end{document}, wmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${w}_{max}$$\end{document},wL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${w}_{L}$$\end{document},wP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${w}_{P}$$\end{document},IP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${I}_{P}$$\end{document},Nc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N}_{c}$$\end{document},∅∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varnothing }^{^\circ }$$\end{document}, γunsat\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\gamma }_{unsat}$$\end{document}). The results of this regression showed that only 6 predictor variables (HC,AC,Cu,wP,∅,γunsat\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$HC,{ A}_{C},{ C}_{u},{ w}_{P},\varnothing , {\gamma }_{unsat}$$\end{document}) out of the 14 variables showed close-correlation between 0.987 and 0.995 to influence the behavior of the dependent variable (target). Therefore, these were further deployed in the GEP and MEP models. The outcome of the models showed that the GEP outclassed the MEP and MLR with a coefficient of determination (R2) of 0.99 and 0.988, relative root-mean-square error (RRMSE) of 0.0728 and 0.0741 and proximal performance indicators of 0.036 and 0.037 for training and validation, respectively. Moreover, the model with a minimum O’Brien and Fleming (OBF) of 0.31 was selected, which was GEP to show that there was no over-fitting. Finally, the sensitivity analysis showed that the parameters influenced the model in this order; wP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${w}_{P}$$\end{document}˃ ∅∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varnothing }^{^\circ }$$\end{document} ˃ HC, ˃γunsat\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\gamma }_{unsat}$$\end{document} ˃ Cu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C}_{u}$$\end{document} ˃AC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A}_{C}$$\end{document}. Generally, GEP proved to be the better soft computing technique in this exercise, although MEP equally performed creditable.
引用
收藏
相关论文
共 11 条
  • [1] Intelligent modeling of unconfined compressive strength (UCS) of hybrid cement-modified unsaturated soil with nanostructured quarry fines inclusion
    Onyelowe, Kennedy C.
    Jalal, Fazal E.
    Iqbal, Mudassir
    Rehman, Zia Ur
    Ibe, Kizito
    INNOVATIVE INFRASTRUCTURE SOLUTIONS, 2022, 7 (01)
  • [2] Unconfined compressive strength of hybrid fiber cement soil mixed with sand and modified by polyacrylamide
    Zhang, Pengyuan
    Bai, Bing
    Jiang, Sichen
    Zhongguo Tiedao Kexue/China Railway Science, 2014, 35 (06): : 7 - 14
  • [3] Intelligent prediction of coefficients of curvature and uniformity of hybrid cement modified unsaturated soil with NQF inclusion
    Onyelowe, Kennedy C.
    Shakeri, Jamshid
    CLEANER ENGINEERING AND TECHNOLOGY, 2021, 4
  • [4] Hybrid XGB model for predicting unconfined compressive strength of solid waste-cement-stabilized cohesive soil
    Yao, Qianglong
    Tu, Yiliang
    Yang, Jiahui
    Zhao, Mingjie
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 449
  • [5] Sensitivity analysis and prediction of erodibility of treated unsaturated soil modified with nanostructured fines of quarry dust using novel artificial neural network
    Onyelowe K.C.
    Gnananandarao T.
    Nwa-David C.
    Nanotechnology for Environmental Engineering, 2021, 6 (02)
  • [6] Modeling of unconfined compressive strength of soil-RAP blend stabilized with Portland cement using multivariate adaptive regression spline
    Ali Reza Ghanizadeh
    Morteza Rahrovan
    Frontiers of Structural and Civil Engineering, 2019, 13 : 787 - 799
  • [7] Modeling of unconfined compressive strength of soil-RAP blend stabilized with Portland cement using multivariate adaptive regression spline
    Ghanizadeh, Ali Reza
    Rahrovan, Morteza
    FRONTIERS OF STRUCTURAL AND CIVIL ENGINEERING, 2019, 13 (04) : 787 - 799
  • [8] Assessing the impact of recycled carpet waste (RCW) on unconfined compressive strength (UCS) and ultrasonic pulse velocity (UPV) in cement-stabilized sandy soil: an experimental study
    Payam Eshghi
    Hamidreza Ghaderi Niri
    Azin Pourdada
    Journal of Building Pathology and Rehabilitation, 2025, 10 (1)
  • [9] Support vector machine (SVM) prediction of coefficients of curvature and uniformity of hybrid cement modified unsaturated soil with NQF inclusion
    Onyelowe, Kennedy C.
    Mahesh, Chilakala B.
    Srikanth, Bandela
    Nwa-David, Chidobere
    Obimba-Wogu, Jesuborn
    Shakeri, Jamshid
    CLEANER ENGINEERING AND TECHNOLOGY, 2021, 5
  • [10] Enhancing unconfined compressive strength of stabilized soil with lime and cement prediction through a robust hybrid machine learning approach utilizing Naive Bayes Algorithm
    Wan, Weiqing
    Journal of Engineering and Applied Science, 2024, 71 (01):