Roles and opportunities for machine learning in organic molecular crystal structure prediction and its applications

被引:0
|
作者
Rebecca J. Clements
Joshua Dickman
Jay Johal
Jennie Martin
Joseph Glover
Graeme M. Day
机构
[1] University of Southampton,School of Chemistry
来源
MRS Bulletin | 2022年 / 47卷
关键词
Machine learning; Crystallographic structure; Crystal; Simulation; Polymorphism;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1054 / 1062
页数:8
相关论文
共 50 条
  • [1] Roles and opportunities for machine learning in organic molecular crystal structure prediction and its applications
    Clements, Rebecca J.
    Dickman, Joshua
    Johal, Jay
    Martin, Jennie
    Glover, Joseph
    Day, Graeme M.
    MRS BULLETIN, 2022, 47 (10) : 1054 - 1062
  • [2] Multifidelity Statistical Machine Learning for Molecular Crystal Structure Prediction
    Egorova, Olga
    Hafizi, Roohollah
    Woods, David C.
    Day, Graeme M.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2020, 124 (39): : 8065 - 8078
  • [3] Accelerated Organic Crystal Structure Prediction with Genetic Algorithms and Machine Learning
    Kadan, Amit
    Ryczko, Kevin
    Wildman, Andrew
    Wang, Rodrigo
    Roitberg, Adrian
    Yamazaki, Takeshi
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (24) : 9388 - 9402
  • [4] Data-efficient machine learning for molecular crystal structure prediction
    Wengert, Simon
    Csanyi, Gabor
    Reuter, Karsten
    Margraf, Johannes T.
    CHEMICAL SCIENCE, 2021, 12 (12) : 4536 - 4546
  • [5] Applications of crystal structure prediction - organic molecular structures: general discussion
    Adjiman, Claire S.
    Brandenburg, Jan Gerit
    Braun, Doris E.
    Cole, Jason
    Collins, Christopher
    Cooper, Andrew I.
    Cruz-Cabeza, Aurora J.
    Day, Graeme M.
    Dudek, Marta
    Hare, Alan
    Iuzzolino, Luca
    McKay, David
    Mitchell, John B. O.
    Mohamed, Sharmarke
    Neelamraju, Sridhar
    Neumann, Marcus
    Nilsson Lill, Sten
    Nyman, Jonas
    Oganov, Artem R.
    Price, Sarah L.
    Pulido, Angeles
    Reutzel-Edens, Susan
    Rietveld, Ivo
    Ruggiero, Michael T.
    Schon, J. Christian
    Tsuzuki, Seiji
    van den Ende, Joost
    Woollam, Grahame
    Zhu, Qiang
    FARADAY DISCUSSIONS, 2018, 211 : 493 - 539
  • [6] Systematically identifying the best chemical representation for machine learning with applications in crystal structure prediction
    McDonagh, David
    Skylaris, Chris-Kriton
    Day, Graeme
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [7] Review on Machine Learning Accelerated Crystal Structure Prediction
    Luo X.
    Wang Z.
    Gao P.
    Zhang W.
    Lv J.
    Wang Y.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2023, 51 (02): : 552 - 560
  • [8] Machine-Learned Potentials by Active Learning from Organic Crystal Structure Prediction Landscapes
    Butler, Patrick W. V.
    Hafizi, Roohollah
    Day, Graeme M.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2024, 128 (05): : 945 - 957
  • [9] A Hybrid Machine Learning Approach for Structure Stability Prediction in Molecular Co-crystal Screenings
    Wengert, Simon
    Csanyi, Gabor
    Reuter, Karsten
    Margraf, Johannes T.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, : 4586 - 4593
  • [10] Geometric Deep Learning for Molecular Crystal Structure Prediction
    Kilgour, Michael
    Rogal, Jutta
    Tuckerman, Mark
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (14) : 4743 - 4756