A framework for synthetic validation of 3D echocardiographic particle image velocimetry

被引:0
|
作者
Ahmad Falahatpisheh
Arash Kheradvar
机构
[1] University of California,Department of Biomedical Engineering, Edwards Lifesciences Center for Advanced Cardiovascular Engineering
[2] Irvine,undefined
来源
Meccanica | 2017年 / 52卷
关键词
Particle image velocimetry; Hill’s spherical vortex; Echocardiography; Brightness field; Echo-PIV;
D O I
暂无
中图分类号
学科分类号
摘要
Particle image velocimetry (PIV) has been significantly advanced since its conception in early 1990s. With the advancement of imaging modalities, applications of 2D PIV have far expanded into biology and medicine. One example is echocardiographic particle image velocimetry that is used for in vivo mapping of the flow inside the heart chambers with opaque boundaries. Velocimetry methods can help better understanding the biomechanical problems. The current trend is to develop three-dimensional velocimetry techniques that take advantage of modern medical imaging tools. This study provides a novel framework for validation of velocimetry methods that are inherently three dimensional such as but not limited to those acquired by 3D echocardiography machines. This framework creates 3D synthetic fields based on a known 3D velocity field V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{V}}$$\end{document} and a given 3D brightness field B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{B}}$$\end{document}. The method begins with computing the inverse flow V∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{V}}^{\varvec{*}} $$\end{document} based on the velocity field V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{V}}$$\end{document}. Then the transformation of B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{B}}$$\end{document}, imposed by V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{V}}$$\end{document}, is calculated using the computed inverse flow according to B∗x=Bx+V∗x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{B}}^{\varvec{*}} \left( {\mathbf{x}} \right) = {\mathbf{B}}\left( {{\mathbf{x}} + {\mathbf{V}}^{\varvec{*}} \left( {\mathbf{x}} \right)} \right)$$\end{document}, where x is the coordinates of voxels in B∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{B}}^{\varvec{*}} $$\end{document}, with a 3D weighted average interpolation, which provides high accuracy, low memory requirement, and low computational time. To check the validity of the framework, we generate pairs of 3D brightness fields by employing Hill’s spherical vortex velocity field. B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{B}}$$\end{document} and the generated B∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{B}}^{\varvec{*}} $$\end{document} are then processed by our in-house 3D particle image velocimetry software to obtain the interrelated velocity field. The results indicates that the computed and imposed velocity fields are in agreement.
引用
收藏
页码:555 / 561
页数:6
相关论文
共 50 条
  • [1] A framework for synthetic validation of 3D echocardiographic particle image velocimetry
    Falahatpisheh, Ahmad
    Kheradvar, Arash
    [J]. MECCANICA, 2017, 52 (03) : 555 - 561
  • [2] Dual-wavelength digital holography for 3D particle image velocimetry: experimental validation
    Grare, S.
    Allano, D.
    Coetmellec, S.
    Perret, G.
    Corbin, F.
    Brunel, M.
    Grehan, G.
    Lebrun, D.
    [J]. APPLIED OPTICS, 2016, 55 (03) : A49 - A53
  • [3] Dual wavelength digital holography for 3D particle image velocimetry
    Grare, S.
    Coetmellec, S.
    Allano, D.
    Grehan, G.
    Brunel, M.
    Lebrun, D.
    [J]. JOURNAL OF THE EUROPEAN OPTICAL SOCIETY-RAPID PUBLICATIONS, 2015, 10
  • [4] Digital holography particle image velocimetry for 3D flow measurement
    Wei, RJ
    Shen, GX
    Ding, HQ
    [J]. OPTICAL TECHNOLOGY AND IMAGE PROCESSING FOR FLUIDS AND SOLIDS DIAGNOSTICS 2002, 2002, 5058 : 61 - 72
  • [5] Volume self-calibration for 3D particle image velocimetry
    Wieneke, B.
    [J]. EXPERIMENTS IN FLUIDS, 2008, 45 (04) : 549 - 556
  • [6] Volume self-calibration for 3D particle image velocimetry
    B. Wieneke
    [J]. Experiments in Fluids, 2008, 45 : 549 - 556
  • [7] 3D particle tracking velocimetry
    [J]. European Space Agency (Brochure) ESA BR, 1999, (BR-154):
  • [8] Echocardiographic Particle Image Velocimetry in Heart Diseases
    Abe, Haruhiko
    [J]. 2018 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2018,
  • [9] 3D scanning particle tracking velocimetry
    Klaus Hoyer
    Markus Holzner
    Beat Lüthi
    Michele Guala
    Alexander Liberzon
    Wolfgang Kinzelbach
    [J]. Experiments in Fluids, 2005, 39 : 923 - 934
  • [10] 3D scanning particle tracking velocimetry
    Hoyer, K
    Holzner, M
    Lüthi, B
    Guala, M
    Liberzon, A
    Kinzelbach, W
    [J]. EXPERIMENTS IN FLUIDS, 2005, 39 (05) : 923 - 934