Approximations of the generalized-Euler-constant function and the generalized Somos’ quadratic recurrence constant

被引:0
|
作者
Aimin Xu
机构
[1] Zhejiang Wanli University,Institute of Mathematics
来源
Journal of Inequalities and Applications | / 2019卷
关键词
Asymptotic expansion; Eulerian fraction; Generalized-Euler-constant function; Inequality; Somos’ quadratic recurrence constant; 11Y60; 33E20; 41A60; 26D15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we provide an estimate for approximating the generalized-Euler-constant function γ(z)=∑k=1∞zk−1(1k−lnk+1k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma (z)=\sum_{k=1}^{\infty }z ^{k-1} (\frac{1}{k}-\ln \frac{k+1}{k} )$\end{document} by its partial sum γN−1(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma _{N-1}(z)$\end{document} when 0<z<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0< z<1$\end{document}. We obtain an asymptotic expansion for the generalized-Euler-constant function and show that the coefficients of the asymptotic expansion are explicitly expressed by the Eulerian fractions. Also, we find a recurrence relation for those coefficients. Using its relation with the generalized-Euler-constant function, we establish two inequalities for the generalized Somos’ quadratic recurrence constant. Moreover, two asymptotic expansions for the natural logarithm of the generalized Somos quadratic recurrence constant are presented.
引用
收藏
相关论文
共 50 条