On the Renormalizations of Circle Homeomorphisms with Several Break Points

被引:0
|
作者
Akhtam Dzhalilov
Kleyber Cunha
Abdumajid Begmatov
机构
[1] Turin Polytechnic University in Tashkent,
[2] Universidade Federal da Bahia,undefined
[3] National University of Uzbekistan,undefined
关键词
Interval exchange map; Rauzy-Veech induction; Renormalization; Dynamical partition; Martingale; Homeomorphism on the circle; Approximation; 37C05; 37C15; 37E05; 37E10; 37E20; 37B10;
D O I
暂无
中图分类号
学科分类号
摘要
Let f be an orientation preserving homeomorphism on the circle with several break points, that is, its derivative Df has jump discontinuities at these points. We study Rauzy-Veech renormalizations of piecewise smooth circle homeomorphisms by considering such maps as generalized interval exchange maps of genus one. Suppose that Df is absolutely continuous on each interval of continuity and DlnDf∈Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D\ln {Df}\in {\mathbb {L}}_{p}$$\end{document} for some p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>1$$\end{document}. We prove that under certain combinatorial assumptions on f, renormalizations Rn(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^{n}(f)$$\end{document} are approximated by piecewise Möbius functions in C1+L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{1+L_{1}}$$\end{document}-norm, that means, Rn(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^{n}(f)$$\end{document} are approximated in C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{1}$$\end{document}-norm and D2Rn(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D^{2}R^{n}(f)$$\end{document} are approximated in L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{1}$$\end{document}-norm. In particular, if the product of the sizes of breaks of f is trivial, then the renormalizations are approximated by piecewise affine interval exchange maps.
引用
收藏
页码:1919 / 1948
页数:29
相关论文
共 50 条
  • [1] On the Renormalizations of Circle Homeomorphisms with Several Break Points
    Dzhalilov, Akhtam
    Cunha, Kleyber
    Begmatov, Abdumajid
    [J]. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2022, 34 (03) : 1919 - 1948
  • [2] RENORMALIZATIONS OF CIRCLE HOMEOMORPHISMS WITH A BREAK POINT
    Dzhalilov, Akhtam
    Begmatov, Abdumajid
    [J]. TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2011, 2 (01): : 54 - 65
  • [3] Non-rigidity for circle homeomorphisms with several break points
    Adouani, Abdelhamid
    Marzougui, Habib
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2019, 39 : 2305 - 2331
  • [4] Piecewise-smooth circle homeomorphisms with several break points
    Dzhalilov, A. A.
    Mayer, D.
    Safarov, U. A.
    [J]. IZVESTIYA MATHEMATICS, 2012, 76 (01) : 94 - 112
  • [5] Renormalizations and rigidity theory for circle homeomorphisms with singularities of the break type
    Khanin, K
    Khmelev, D
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 235 (01) : 69 - 124
  • [6] Renormalizations and Rigidity Theory for Circle Homeomorphisms with Singularities of the Break Type
    K. Khanin
    D. Khmelev
    [J]. Communications in Mathematical Physics, 2003, 235 : 69 - 124
  • [7] Circle homeomorphisms with two break points
    Dzhalilov, Akhtam
    Liousse, Isabelle
    [J]. NONLINEARITY, 2006, 19 (08) : 1951 - 1968
  • [8] Singular measures for class P-circle homeomorphisms with several break points
    Adouani, Abdelhamid
    Marzougui, Habib
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2014, 34 : 423 - 456
  • [9] On conjugations of circle homeomorphisms with two break points
    Akhadkulov, Habibulla
    Dzhalilov, Akhtam
    Mayer, Dieter
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2014, 34 : 725 - 741
  • [10] Singular invariant measures of homeomorphisms of the circle with break points
    Dzhalilov, AA
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 1999, 54 (04) : 841 - 842