Enhanced U-Net segmentation with ensemble convolutional neural network for automated skin disease classification

被引:0
|
作者
Dasari Anantha Reddy
Swarup Roy
Sanjay Kumar
Rakesh Tripathi
机构
[1] Department of Information Technology,Department of Computer Applications
[2] NIT,undefined
[3] Sikkim University,undefined
来源
关键词
Skin disease classification; Enhanced U-Net; Optimized ensemble convolutional neural network; Support vector machine; Adaboost; Random forest; Whale-electric fish optimization; Artificial neural network; Extreme gradient boosting;
D O I
暂无
中图分类号
学科分类号
摘要
In recent years, skin-related problems induce psychological problems and also injure physical health, particularly if the patient’s face was disfigured or damaged. Smart devices are used for gathering medical images for knowing their skin condition. Skin disease diagnosis is a complex task, which can be solved by adopting different lesion detection and classification approaches. However, the existing challenges cannot be solved by mixing the disease samples from diverse data sources while using simple data fusion approaches. The traditional deep learning-based computer-aided diagnosis approaches suffer from poor extraction of skin lesions due to complex features like limited training datasets, low contrast with the background, presence of artifacts, and fuzzy boundaries. It also includes problems like complex computation, poor generalization, and over-fitting while using the appropriate tuning of large-scale parameters. This paper intends to propose a new framework by using skin lesions classification and segmentation procedures for the automated diagnosis of various skin diseases. The significant stages of the given offered method are pre-processing lesion segmentation and classification. In the beginning, grey-level conversion, hair removal, and contrast enhancement are performed to make the image fit for effective classification. Once image pre-processing is over, the segmentation of skin lesions is done by the enhanced U-Net segmentation, in which the improvement is attained by proposing a hybrid optimization algorithm. Moreover, the offered hybridized optimization algorithm solves the local optimum issues, and also it has the ability for resolving a finite set of problems. Merging the optimization algorithms can balance the exploration and exploitation capability owing to its ability of convergence speed, searching global optimum, and simplicity. The classification is further performed by the optimized ensemble-convolutional neural network (E-CNN). Instead of the fully connected layer in CNN, five different expert systems like random forest, artificial neural network, support vector machine, Adaboost, and Extreme Gradient Boosting (XGBoost) are used for classifying the skin disease by CNN. The system also employs optimization of different parameters in the classification stage to improve computing efficiency and reduce network complexity. The hybrid meta-heuristic termed whale-electric fish optimization (W-EFO) based on EFO and whale optimization algorithm is used for improvising the segmentation and classification task. The comparative analysis over conventional models proves that the developed model encourages effective performance when analyzing diverse measures.
引用
收藏
页码:4111 / 4156
页数:45
相关论文
共 50 条
  • [1] Enhanced U-Net segmentation with ensemble convolutional neural network for automated skin disease classification
    Reddy, Dasari Anantha
    Roy, Swarup
    Kumar, Sanjay
    Tripathi, Rakesh
    KNOWLEDGE AND INFORMATION SYSTEMS, 2023, 65 (10) : 4111 - 4156
  • [2] A Convolutional Neural Network for Skin Lesion Segmentation Using Double U-Net Architecture
    Abid, Iqra
    Almakdi, Sultan
    Rahman, Hameedur
    Almulihi, Ahmed
    Alqahtani, Ali
    Rajab, Khairan
    Alqhatani, Abdulmajeed
    Shaikh, Asadullah
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 33 (03): : 1407 - 1421
  • [3] Nanoparticle Segmentation Based on U-Net Convolutional Neural Network
    Zhang Fang
    Wu Yue
    Xiao Zhitao
    Geng Lei
    Wu Jun
    Liu Yanbei
    Wang Wen
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (06)
  • [4] Enhancing breast cancer segmentation and classification: An Ensemble Deep Convolutional Neural Network and U-net approach on ultrasound images
    Islam, Md Rakibul
    Rahman, Md Mahbubur
    Ali, Md Shahin
    Nafi, Abdullah Al Nomaan
    Alam, Md Shahariar
    Godder, Tapan Kumar
    Miah, Md Sipon
    Islam, Md Khairul
    MACHINE LEARNING WITH APPLICATIONS, 2024, 16
  • [5] End-to-End Automated Iris Segmentation Framework Using U-Net Convolutional Neural Network
    Chai, Tong-Yuen
    Goi, Bok-Min
    Hong, Ye-Yi
    INFORMATION SCIENCE AND APPLICATIONS, 2020, 621 : 259 - 267
  • [6] A deep Residual U-Net convolutional neural network for automated lung segmentation in computed tomography images
    Khanna, Anita
    Londhe, Narendra D.
    Gupta, S.
    Semwal, Ashish
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2020, 40 (03) : 1314 - 1327
  • [7] Retinal Vessel Segmentation Algorithm Based on U-NET Convolutional Neural Network
    Zhang, Yun-Hao
    Wang, Jie-Sheng
    Zhang, Zhi-Hao
    ENGINEERING LETTERS, 2023, 31 (04) : 1837 - 1846
  • [8] Microaneurysms segmentation with a U-Net based on recurrent residual convolutional neural network
    Kou, Caixia
    Li, Wei
    Liang, Wei
    Yu, Zekuan
    Hao, Jianchen
    JOURNAL OF MEDICAL IMAGING, 2019, 6 (02)
  • [9] Skin lesion segmentation using convolutional neural networks with improved U-Net architecture
    Iranpoor, Rasool
    Mahboob, Amir Soltany
    Shahbandegan, Shakiba
    Baniasadi, Nasrin
    2020 6TH IRANIAN CONFERENCE ON SIGNAL PROCESSING AND INTELLIGENT SYSTEMS (ICSPIS), 2020,
  • [10] Improved U-Net: Fully Convolutional Network Model for Skin-Lesion Segmentation
    Sanjar, Karshiev
    Bekhzod, Olimov
    Kim, Jaeil
    Kim, Jaesoo
    Paul, Anand
    Kim, Jeonghong
    APPLIED SCIENCES-BASEL, 2020, 10 (10):