Bacterial solutions to multicellularity: a tale of biofilms, filaments and fruiting bodies

被引:0
|
作者
Dennis Claessen
Daniel E. Rozen
Oscar P. Kuipers
Lotte Søgaard-Andersen
Gilles P. van Wezel
机构
[1] Molecular Biotechnology,Department of Molecular Genetics
[2] Institute of Biology Leiden,Department of Ecophysiology
[3] Leiden University,undefined
[4] Groningen Biomolecular Sciences and Biotechnology Institute,undefined
[5] University of Groningen,undefined
[6] Linnaeusborg,undefined
[7] Kluyver Center for Genomics of Industrial Fermentation,undefined
[8] Max Planck Institute for Terrestrial Microbiology,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Bacterial multicellularity takes several phenotypically diverse forms and has independently evolved in different species.Simple bacterial multicellularity can rapidly evolve as a result of mutations that prevent cells from separating after division or that cause independent cells to co-aggregate.Hallmark features of bacterial multicellularity include morphological differentiation, programmed cell death and a well-defined and reproducible multicellular shape (known as patterning).The benefits of bacterial multicellularity include predation- and stress-resistance and improved resource acquisition and dispersal.Bacterial multicellular structures that arise via aggregation — for example, in Myxobacteria spp. — are susceptible to the emergence of cheater cells that exploit other cooperative cells.Experimental evolution offers exciting possibilities for understanding the mechanisms and dynamics of the de novo evolution of bacterial multicellularity under defined laboratory conditions.
引用
收藏
页码:115 / 124
页数:9
相关论文
共 35 条
  • [1] Bacterial solutions to multicellularity: a tale of biofilms, filaments and fruiting bodies
    Claessen, Dennis
    Rozen, Daniel E.
    Kuipers, Oscar P.
    Sogaard-Andersen, Lotte
    van Wezel, Gilles P.
    NATURE REVIEWS MICROBIOLOGY, 2014, 12 (02) : 115 - 124
  • [2] Bacterial multicellularity in biofilms
    Drescher K.
    BIOspektrum, 2019, 25 (3) : 258 - 260
  • [3] Bacterial biofilms: prokaryotic adventures in multicellularity
    Webb, JS
    Givskov, M
    Kjelleberg, S
    CURRENT OPINION IN MICROBIOLOGY, 2003, 6 (06) : 578 - 585
  • [4] Interconnected Cavernous Structure of Bacterial Fruiting Bodies
    Harvey, Cameron W.
    Du, Huijing
    Xu, Zhiliang
    Kaiser, Dale
    Aranson, Igor
    Alber, Mark
    PLOS COMPUTATIONAL BIOLOGY, 2012, 8 (12)
  • [5] Bacterial complexes of the fruiting bodies and hyphosphere of certain basidiomycetes
    Yu. A. Zagriadskaia
    L. V. Lysak
    I. I. Sidorova
    A. V. Aleksandrova
    E. Yu. Voronina
    Biology Bulletin, 2013, 40 : 358 - 364
  • [6] Bacterial complexes of the fruiting bodies and hyphosphere of certain basidiomycetes
    Zagriadskaia, Yu A.
    Lysak, L. V.
    Sidorova, I. I.
    Aleksandrova, A. V.
    Voronina, E. Yu
    BIOLOGY BULLETIN, 2013, 40 (04) : 358 - 364
  • [7] Bacterial complexes of the fruiting bodies and hyphosphere of certain basidiomycetes
    Yu. A. Zagriadskaia
    L. V. Lysak
    I. I. Sidorova
    A. V. Aleksandrova
    E. Yu. Voronina
    Biology Bulletin, 2014, 41 : 12 - 18
  • [8] Bacterial complexes of the fruiting bodies and hyphosphere of certain basidiomycetes
    Zagriadskaia, Yu A.
    Lysak, L. V.
    Sidorova, I. I.
    Aleksandrova, A. V.
    Voronina, E. Yu
    BIOLOGY BULLETIN, 2014, 41 (01) : 12 - 18
  • [9] Interactions between multiple filaments and bacterial biofilms on the surface of an apple
    程鹤
    徐茂源
    潘姝慧
    卢新培
    刘大伟
    Plasma Science and Technology, 2018, 20 (04) : 42 - 50
  • [10] Interactions between multiple filaments and bacterial biofilms on the surface of an apple
    Cheng, He
    Xu, Maoyuan
    Pan, Shuhui
    Lu, Xinpei
    Liu, Dawei
    PLASMA SCIENCE & TECHNOLOGY, 2018, 20 (04)