Zariski cancellation problem for noncommutative algebras

被引:0
|
作者
Jason Bell
James J. Zhang
机构
[1] University of Waterloo,Department of Pure Mathematics
[2] University of Washington,Department of Mathematics
来源
Selecta Mathematica | 2017年 / 23卷
关键词
Zariski cancellation problem; Noncommutative algebra; Effective and dominating discriminant; Locally nilpotent derivation; Skew polynomial ring; Primary 16W70; 16W25; 16S38;
D O I
暂无
中图分类号
学科分类号
摘要
A noncommutative analogue of the Zariski cancellation problem asks whether A[x]≅B[x]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A[x]\cong B[x]$$\end{document} implies A≅B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\cong B$$\end{document} when A and B are noncommutative algebras. We resolve this affirmatively in the case when A is a noncommutative finitely generated domain over the complex field of Gelfand–Kirillov dimension two. In addition, we resolve the Zariski cancellation problem for several classes of Artin–Schelter regular algebras of higher Gelfand–Kirillov dimension.
引用
收藏
页码:1709 / 1737
页数:28
相关论文
共 50 条
  • [1] Zariski cancellation problem for noncommutative algebras
    Bell, Jason
    Zhang, James J.
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2017, 23 (03): : 1709 - 1737
  • [2] Zariski cancellation problem for non-domain noncommutative algebras
    Lezama, O.
    Wang, Y. -H.
    Zhang, J. J.
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2019, 292 (3-4) : 1269 - 1290
  • [3] Zariski cancellation problem for non-domain noncommutative algebras
    O. Lezama
    Y.-H. Wang
    J. J. Zhang
    [J]. Mathematische Zeitschrift, 2019, 292 : 1269 - 1290
  • [4] The Zariski cancellation problem for Poisson algebras
    Gaddis, Jason
    Wang, Xingting
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2020, 101 (03): : 1250 - 1279
  • [5] On the cancellation problem of Zariski
    Byeon, DH
    Kim, HK
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1996, 53 (03) : 499 - 500
  • [6] A SURVEY ON ZARISKI CANCELLATION PROBLEM
    Gupta, Neena
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2015, 46 (06): : 865 - 877
  • [7] A survey on Zariski cancellation problem
    Neena Gupta
    [J]. Indian Journal of Pure and Applied Mathematics, 2015, 46 : 865 - 877
  • [8] On Zariski's Cancellation Problem in positive characteristic
    Gupta, Neena
    [J]. ADVANCES IN MATHEMATICS, 2014, 264 : 296 - 307
  • [9] About counterexamples for generalized Zariski cancellation problem
    Kudou, Riku
    [J]. COMMUNICATIONS IN ALGEBRA, 2020, 48 (06) : 2358 - 2368
  • [10] On the compactifications of contractible affine threefolds and the Zariski Cancellation Problem
    Takashi Kishimoto
    [J]. Mathematische Zeitschrift, 2004, 247 : 149 - 181