Density and Thermal Expansion of High Purity Nickel over the Temperature Range from 150 K to 2030 K

被引:0
|
作者
R. N. Abdullaev
Yu. M. Kozlovskii
R. A. Khairulin
S. V. Stankus
机构
[1] Siberian Branch of the Russian Academy of Sciences,Institute of Thermophysics
来源
关键词
Density; Melt; Nickel; Solid; Thermal expansion;
D O I
暂无
中图分类号
学科分类号
摘要
The paper presents the results of an investigation of the nickel density and thermal expansion over the temperature range from 145 K to 2030 K. The measurements have been carried out by using the dilatometer method and the γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upgamma $$\end{document}-ray attenuation technique (gamma method). The errors of the density and coefficients of thermal expansion measurements are estimated to be within 0.05 % to 0.25 % and 1 % to 2.5 %, respectively. The accuracy of determination of the volumetric thermal expansion coefficient of the melt by the γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upgamma $$\end{document}-ray attenuation technique is substantiated. The density change on melting (4.70±0.15\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4.70 \pm 0.15$$\end{document}) % has been directly measured. The temperature dependences and reference tables of the volumetric properties of solid and liquid nickel have been developed. A comparison of the obtained results with literature data has been made.
引用
收藏
页码:603 / 619
页数:16
相关论文
共 50 条
  • [1] Density and Thermal Expansion of High Purity Nickel over the Temperature Range from 150 K to 2030 K
    Abdullaev, R. N.
    Kozlovskii, Yu. M.
    Khairulin, R. A.
    Stankus, S. V.
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2015, 36 (04) : 603 - 619
  • [2] Density and Thermal Expansion of High Purity Cobalt over the Temperature Range from 140 K to 2073 K
    R. N. Abdullaev
    R. A. Khairulin
    Yu. M. Kozlovskii
    S. V. Stankus
    Metallurgical and Materials Transactions A, 2021, 52 : 5449 - 5456
  • [3] Density and Thermal Expansion of High Purity Cobalt over the Temperature Range from 140 K to 2073 K
    Abdullaev, R. N.
    Khairulin, R. A.
    Kozlovskii, Yu. M.
    Stankus, S. V.
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2021, 52 (12): : 5449 - 5456
  • [4] The density and thermal expansion of dysprosium in the temperature range 110–1950 K
    Yu. M. Kozlovskii
    S. V. Stankus
    Thermophysics and Aeromechanics, 2015, 22 : 501 - 508
  • [5] The density and thermal expansion of dysprosium in the temperature range 110-1950 K
    Kozlovskii, Yu. M.
    Stankus, S. V.
    THERMOPHYSICS AND AEROMECHANICS, 2015, 22 (04) : 501 - 508
  • [6] THERMAL-EXPANSION ANOMALIES OF SAMARIUM MONOSULFIDE FROM 150-K TO 240-K RANGE
    NOGTEVA, VV
    IZVESTIYA SIBIRSKOGO OTDELENIYA AKADEMII NAUK SSSR SERIYA KHIMICHESKIKH NAUK, 1990, (06): : 35 - 37
  • [7] Impact response of nickel in the 150-1150 K temperature range
    Zaretsky, E. B.
    JOURNAL OF APPLIED PHYSICS, 2009, 105 (09)
  • [8] Impact response of nickel in the 150-1150 K temperature range
    Zaretsky, E.B.
    Journal of Applied Physics, 2009, 105 (09):
  • [9] Thermal conductivities of ionic liquids over the temperature range from 293 K to 353 K
    Ge, Rile
    Hardacre, Christopher
    Nancarrow, Paul
    Rooney, David W.
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2007, 52 (05): : 1819 - 1823
  • [10] Density, Thermal Expansion, Enthalpy, Heat Capacity, and Thermal Conductivity of Calcium in the Temperature Range 720–1290 K
    R. N. Abdullaev
    R. A. Khairulin
    A. Sh. Agazhanov
    A. R. Khairulin
    Yu. M. Kozlovskii
    D. A. Samoshkin
    Russian Journal of Inorganic Chemistry, 2023, 68 : 125 - 132