Volatility Forecasting Using Support Vector Regression and a Hybrid Genetic Algorithm

被引:1
|
作者
Guillermo Santamaría-Bonfil
Juan Frausto-Solís
Ignacio Vázquez-Rodarte
机构
[1] ITESM,
[2] UPEMOR,undefined
来源
Computational Economics | 2015年 / 45卷
关键词
Support vector regression; Genetic algorithm; Boltzmann selection; Chaotic number generator; Parameter optimization; Volatility forecasting;
D O I
暂无
中图分类号
学科分类号
摘要
Volatility forecasting is an important process required to measure variability in equity prices, risk management, and several other financial activities. Generalized autoregressive conditional heteroscedastic methods (GARCH)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\textit{GARCH})$$\end{document} have been used to forecast volatility with reasonable success due unreal assumptions about volatility underlying process. Recently, a supervised learning machine called support vector regression (SVR)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(SVR)$$\end{document} has been employed to forecast financial volatility. Nevertheless, the quality and stability of the model obtained through SVR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SVR$$\end{document} training process depend strongly on the selection of SVR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SVR$$\end{document} parameters. Typically, these are tuned by a grid search method (SVRGS)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(SVR_{GS})$$\end{document}; however, this tuning procedure is prone to get trapped on local optima, requires a priori information, and it does not concurrently tune the kernels and its parameters. This paper presents a new method called SVRGBC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SVR_{GBC}$$\end{document} for the financial volatility forecasting problem which selects simultaneously the proper kernel and its parameter values. SVRGBC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SVR_{GBC}$$\end{document} is a hybrid genetic algorithm which uses several genetic operators to enhance the exploration of solutions space: it introduces a new genetic operator called Boltzmann selection, and the use of several random number generators. Experimental data correspond to two ASEAN and two latinoamerican market indexes. SVRGBC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SVR_{GBC}$$\end{document} results are compared against GARCH1,1andSVRGS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textit{GARCH}\left( 1,1\right) \hbox { and }SVR_{GS}$$\end{document} method. It uses the mean absolute percentage error and directional accuracy functions for measuring quality results. Experimentation shows that, in general, SVRGBC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SVR_{GBC}$$\end{document} overcomes quality of GARCH1,1andSVRGS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textit{GARCH}\left( 1,1\right) \hbox { and }SVR_{GS}$$\end{document}.
引用
收藏
页码:111 / 133
页数:22
相关论文
共 50 条
  • [1] Volatility Forecasting Using Support Vector Regression and a Hybrid Genetic Algorithm
    Santamaria-Bonfil, Guillermo
    Frausto-Solis, Juan
    Vazquez-Rodarte, Ignacio
    [J]. COMPUTATIONAL ECONOMICS, 2015, 45 (01) : 111 - 133
  • [2] HYBRID OF GENETIC ALGORITHM AND SIMULATED ANNEALING FOR SUPPORT VECTOR REGRESSION OPTIMIZATION IN RAINFALL FORECASTING
    Zhu, Changming
    Wu, Jiansheng
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND APPLICATIONS, 2013, 12 (02)
  • [3] Tourism demand forecasting by support vector regression and genetic algorithm
    Cai, Zhong-jian
    Lu, Sheng
    Zhang, Xiao-bin
    [J]. 2009 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, VOL 5, 2009, : 144 - +
  • [4] Volatility Modelling and Prediction by Hybrid Support Vector Regression with Chaotic Genetic Algorithms
    Ou, Phichhang
    Wang, Hengshan
    [J]. INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2014, 11 (03) : 287 - 292
  • [5] A Hybrid Model for Forecasting Realized Volatility Based on Heterogeneous Autoregressive Model and Support Vector Regression
    Zhuo, Yue
    Morimoto, Takayuki
    [J]. RISKS, 2024, 12 (01)
  • [6] Support Vector Regression with Chaotic Hybrid Algorithm in Cyclic Electric Load Forecasting
    Hong, Wei-Chiang
    Dong, Yucheng
    Chen, Li-Yueh
    Panigrahi, B. K.
    Wei, Shih-Yung
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SOFT COMPUTING FOR PROBLEM SOLVING (SOCPROS 2011), VOL 1, 2012, 130 : 833 - +
  • [7] Seasonal Support vector regression with chaotic genetic algorithm in electric load forecasting
    Hong, Wei-Chiang
    Dong, Yucheng
    Chen, Li-Yueh
    Wei, Shih-Yung
    [J]. 2012 SIXTH INTERNATIONAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTING (ICGEC), 2012, : 124 - 127
  • [8] Electromechanical equipment state forecasting based on genetic algorithm - support vector regression
    Huang Ji
    Bo Yucheng
    Wang Huiyuan
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (07) : 8399 - 8402
  • [9] Forecasting of freight volume based on support vector regression optimized by genetic algorithm
    Gao, Yan
    [J]. 2009 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, VOL 2, 2009, : 550 - 553
  • [10] Applications of the Chaotic Quantum Genetic Algorithm with Support Vector Regression in Load Forecasting
    Lee, Cheng-Wen
    Lin, Bing-Yi
    [J]. ENERGIES, 2017, 10 (11)