Producibility in hierarchical self-assembly

被引:0
|
作者
David Doty
机构
[1] California Institute of Technology,
[2] University of California,undefined
来源
Natural Computing | 2016年 / 15卷
关键词
Hierarchical; Self-assembly; Deterministic;
D O I
暂无
中图分类号
学科分类号
摘要
Three results are shown on producibility in the hierarchical model of tile self-assembly. It is shown that a simple greedy polynomial-time strategy decides whether an assembly α is producible. The algorithm can be optimized to use O(|α|log2|α|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(|\alpha | \log ^2 |\alpha |)$$\end{document} time. Cannon et al. (STACS 2013: proceedings of the thirtieth international symposium on theoretical aspects of computer science. pp 172–184, 2013) showed that the problem of deciding if an assembly α is the unique producible terminal assembly of a tile system T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {T}}$$\end{document} can be solved in O(|α|2|T|+|α||T|2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(|\alpha |^2 |{\mathcal {T}}| + |\alpha | |{\mathcal {T}}|^2)$$\end{document} time for the special case of noncooperative “temperature 1” systems. It is shown that this can be improved to O(|α||T|log|T|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(|\alpha | |{\mathcal {T}}| \log |{\mathcal {T}}|)$$\end{document} time. Finally, it is shown that if two assemblies are producible, and if they can be overlapped consistently—i.e., if the positions that they share have the same tile type in each assembly—then their union is also producible .
引用
收藏
页码:41 / 49
页数:8
相关论文
共 50 条
  • [1] Producibility in hierarchical self-assembly
    Doty, David
    [J]. NATURAL COMPUTING, 2016, 15 (01) : 41 - 49
  • [2] HIERARCHICAL SELF-ASSEMBLY
    WHITESIDES, GM
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1995, 210 : 168 - ORGN
  • [3] Hierarchical Self-Assembly for Nanomedicine
    Bishop, Kyle J. M.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (05) : 1598 - 1600
  • [4] A hierarchical self-assembly of eumelanin
    Clancy, CMR
    Nofsinger, JB
    Hanks, RK
    Simon, JD
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (33): : 7871 - 7873
  • [5] Hierarchical Self-Assembly on Silicon
    Tancini, Francesca
    Genovese, Damiano
    Montalti, Marco
    Cristofolini, Luigi
    Nas, Lucia
    Prodi, Luca
    Dalcanale, Enrico
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (13) : 4781 - 4789
  • [6] Seeding Nanoparticles for Hierarchical Self-Assembly
    Wang, Yu
    Chen, Lu
    Zhong, Wei-Hong Katie
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (06): : 3560 - 3566
  • [7] Hierarchical self-assembly of nanostructured materials
    Stupp, Samuel I.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 239
  • [8] PARALLELISM AND TIME IN HIERARCHICAL SELF-ASSEMBLY
    Chen, Ho-Lin
    Doty, David
    [J]. SIAM JOURNAL ON COMPUTING, 2017, 46 (02) : 661 - 709
  • [9] Hierarchical self-assembly of columnar aggregates
    Keizer, HM
    Sijbesma, RP
    [J]. CHEMICAL SOCIETY REVIEWS, 2005, 34 (03) : 226 - 234
  • [10] Molecular coordination of hierarchical self-assembly
    MacLennan, Bruce J.
    [J]. Nano Communication Networks, 2012, 3 (02) : 116 - 128