Stable Runge–Kutta–Nyström methods for dissipative stiff problems

被引:0
|
作者
I. Alonso-Mallo
B. Cano
M. J. Moreta
机构
[1] Universidad de Valladolid,Departamento de Matemática Aplicada
来源
Numerical Algorithms | 2006年 / 42卷
关键词
Runge–Kutta–Nyström methods; stability; 65L06; 65L20;
D O I
暂无
中图分类号
学科分类号
摘要
The definition of stability for Runge–Kutta–Nyström methods applied to stiff second-order in time problems has been recently revised, proving that it is necessary to add a new condition on the coefficients in order to guarantee the stability. In this paper, we study the case of second-order in time problems in the nonconservative case. For this, we construct an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R$\end{document}-stable Runge–Kutta–Nyström method with two stages satisfying this condition of stability and we show numerically the advantages of this new method.
引用
收藏
页码:193 / 203
页数:10
相关论文
共 50 条
  • [1] Stable Runge-Kutta-Nystrom methods for dissipative stiff problems
    Alonso-Mallo, I.
    Cano, B.
    Moreta, M. J.
    NUMERICAL ALGORITHMS, 2006, 42 (02) : 193 - 203
  • [2] An adapted Runge-Kutta-Nyström method for stiff oscillatory problems with two frequencies
    1600, ICIC Express Letters Office, Tokai University, Kumamoto Campus, 9-1-1, Toroku, Kumamoto, 862-8652, Japan (07):
  • [3] Gauss-Runge-Kutta-Nyström methods
    Christopher Burnton
    Rudolf Scherer
    BIT Numerical Mathematics, 1998, 38 : 12 - 21
  • [4] Functionally fitted Runge-Kutta-Nyström methods
    N. S. Hoang
    R. B. Sidje
    BIT Numerical Mathematics, 2016, 56 : 129 - 150
  • [5] Construction of Exponentially Fitted Symplectic Runge–Kutta–Nyström Methods from Partitioned Runge–Kutta Methods
    T. Monovasilis
    Z. Kalogiratou
    T. E. Simos
    Mediterranean Journal of Mathematics, 2016, 13 : 2271 - 2285
  • [6] Runge–Kutta–Nyström methods with equation dependent coefficients and reduced phase lag for oscillatory problems
    Yanping Yang
    Xiong You
    Yonglei Fang
    Journal of Mathematical Chemistry, 2017, 55 : 259 - 277
  • [7] Diagonally implicit Runge-Kutta methods for stiff problems
    Skvortsov L.M.
    Computational Mathematics and Mathematical Physics, 2006, 46 (12) : 2110 - 2123
  • [8] Runge–Kutta–Nyström‐type parallel block predictor–corrector methods
    Nguyen Huu Cong
    Karl Strehmel
    Rüdiger Weiner
    Helmut Podhaisky
    Advances in Computational Mathematics, 1999, 10 : 115 - 133
  • [9] An alternative approach for order conditions of Runge-Kutta-Nyström methods
    Xue Sun
    Zhongli Liu
    Hongjiong Tian
    Advances in Computational Mathematics, 2021, 47
  • [10] 辛Runge-Kutta-Nystrm方法
    肖爱国
    湘潭大学自然科学学报, 1997, (01) : 5 - 7