An efficient method for privacy-preserving trajectory data publishing based on data partitioning

被引:0
|
作者
Songyuan Li
Hong Shen
Yingpeng Sang
Hui Tian
机构
[1] Sun Yat-sen University,School of Data and Computer Science
[2] Griffith University,School of Information and Communication Technology
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Since Osman Abul et al. first proposed the k-anonymity-based privacy protection for trajectory data, researchers have proposed a variety of trajectory privacy-preserving methods. These methods mainly adopt a static anonymity algorithm, which only focusing on the trajectories in a specific time span, directly anonymizes data and publishes them without considering dynamic nature of trajectory data as the new time slice arriving. Furthermore, due to its correlation with time and position, the trajectory data is produced in large scale and many sensitive attributes; the traditional k-anonymity-based privacy-preserving models need to recalculate the last released trajectory data, which will increase the computing cost and reduce the availability of the released trajectories, are not fit for privacy protection in large-scale trajectory data. Therefore, this paper presents a method to dynamically publish the large-scale vehicle trajectory data with privacy protection under (k,δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k,\delta )$$\end{document} security constraints. According to the spatial and temporal characteristics of vehicle trajectory data, this paper first proposes a method to partition the trajectory data for storage and computation. We choose the sample point (xi,yi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(x_{i},y_{i})$$\end{document} at time ti\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{i}$$\end{document} as partition points and store the partitions of the trajectory data according to the time sequence and location of the running vehicle. This results in the efficient trajectory scanning, clustering and privacy protection. We use (xi,yi,tm-tn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(x_{i},y_{i},t_{m}-t_{n})$$\end{document} to represent the identifier of trajectory data to publish, use the generalize function to cluster trajectory data under the (k,δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k,\delta )$$\end{document} security constraints. Through this way, we can effectively process the trajectory in every data partition as time goes on and need not to recalculate the released trajectories, effectively reduce the computing cost. Through experiments on real trajectory data and Oldenburg trajectory data, confirming the data partitioning method in privacy-preserving large-scale trajectory data publishing under the security constraint of (k,δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k,\delta )$$\end{document}, and the l-diversity. By the experimental comparison, our method maintains a least level of computing cost and higher data availability.
引用
收藏
页码:5276 / 5300
页数:24
相关论文
共 50 条
  • [1] An efficient method for privacy-preserving trajectory data publishing based on data partitioning
    Li, Songyuan
    Shen, Hong
    Sang, Yingpeng
    Tian, Hui
    [J]. JOURNAL OF SUPERCOMPUTING, 2020, 76 (07): : 5276 - 5300
  • [2] Personalized Privacy-Preserving Trajectory Data Publishing
    Lu Qiwei
    Wang Caimei
    Xiong Yan
    Xia Huihua
    Huang Wenchao
    Gong Xudong
    [J]. CHINESE JOURNAL OF ELECTRONICS, 2017, 26 (02) : 285 - 291
  • [3] Personalized Privacy-Preserving Trajectory Data Publishing
    LU Qiwei
    WANG Caimei
    XIONG Yan
    XIA Huihua
    HUANG Wenchao
    GONG Xudong
    [J]. Chinese Journal of Electronics, 2017, 26 (02) : 285 - 291
  • [4] An efficient privacy-preserving approach for data publishing
    Xinyu Qian
    Xinning Li
    Zhiping Zhou
    [J]. Journal of Ambient Intelligence and Humanized Computing, 2023, 14 : 2077 - 2093
  • [5] Privacy-preserving trajectory data publishing by local suppression
    Chen, Rui
    Fung, Benjamin C. M.
    Mohammed, Noman
    Desai, Bipin C.
    Wang, Ke
    [J]. INFORMATION SCIENCES, 2013, 231 : 83 - 97
  • [6] STDP: Secure Privacy-Preserving Trajectory Data Publishing
    Eom, Chris Soo-Hyun
    Lee, Wookey
    Leung, Carson Kai-Sang
    [J]. IEEE 2018 INTERNATIONAL CONGRESS ON CYBERMATICS / 2018 IEEE CONFERENCES ON INTERNET OF THINGS, GREEN COMPUTING AND COMMUNICATIONS, CYBER, PHYSICAL AND SOCIAL COMPUTING, SMART DATA, BLOCKCHAIN, COMPUTER AND INFORMATION TECHNOLOGY, 2018, : 892 - 899
  • [7] An efficient privacy-preserving approach for data publishing
    Qian, Xinyu
    Li, Xinning
    Zhou, Zhiping
    [J]. JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 14 (3) : 2077 - 2093
  • [8] Suppression techniques for privacy-preserving trajectory data publishing
    Lin, Chen-Yi
    [J]. KNOWLEDGE-BASED SYSTEMS, 2020, 206
  • [9] Privacy-Preserving Data Publishing
    Liu, Ruilin
    Wang, Hui
    [J]. 2010 IEEE 26TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING WORKSHOPS (ICDE 2010), 2010, : 305 - 308
  • [10] Privacy-Preserving Data Publishing
    Chen, Bee-Chung
    Kifer, Daniel
    LeFevre, Kristen
    Machanavajjhala, Ashwin
    [J]. FOUNDATIONS AND TRENDS IN DATABASES, 2009, 2 (1-2): : 1 - 167