Noncommutative rational Pólya series

被引:0
|
作者
Jason Bell
Daniel Smertnig
机构
[1] University of Waterloo,Department of Pure Mathematics
来源
Selecta Mathematica | 2021年 / 27卷
关键词
Noncommutative rational series; Weighted finite automata; Pólya series; Hadamard sub-invertibility; Unambiguous rational series; Primary 68Q45; 68Q70; Secondary 11B37;
D O I
暂无
中图分类号
学科分类号
摘要
A (noncommutative) Pólya series over a field K is a formal power series whose nonzero coefficients are contained in a finitely generated subgroup of K×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K^\times $$\end{document}. We show that rational Pólya series are unambiguous rational series, proving a 40 year old conjecture of Reutenauer. The proof combines methods from noncommutative algebra, automata theory, and number theory (specifically, unit equations). As a corollary, a rational series is a Pólya series if and only if it is Hadamard sub-invertible. Phrased differently, we show that every weighted finite automaton taking values in a finitely generated subgroup of a field (and zero) is equivalent to an unambiguous weighted finite automaton.
引用
收藏
相关论文
共 50 条