A polyhedral approach to online bipartite matching

被引:0
|
作者
Alfredo Torrico
Shabbir Ahmed
Alejandro Toriello
机构
[1] Georgia Institute of Technology,H. Milton Stewart School of Industrial and Systems Engineering
来源
Mathematical Programming | 2018年 / 172卷
关键词
Online matching; Dynamic program; Polyhedral relaxation; 90C27; 90C35; 90C39;
D O I
暂无
中图分类号
学科分类号
摘要
We study the i.i.d. online bipartite matching problem, a dynamic version of the classical model where one side of the bipartition is fixed and known in advance, while nodes from the other side appear one at a time as i.i.d. realizations of a uniform distribution, and must immediately be matched or discarded. We consider various relaxations of the polyhedral set of achievable matching probabilities, introduce valid inequalities, and discuss when they are facet-defining. We also show how several of these relaxations correspond to ranking policies and their time-dependent generalizations. We finally present a computational study of these relaxations and policies to determine their empirical performance.
引用
收藏
页码:443 / 465
页数:22
相关论文
共 50 条
  • [1] A Polyhedral Approach to Online Bipartite Matching
    Torrico, Alfredo
    Ahmed, Shabbir
    Toriello, Alejandro
    [J]. INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2016, 2016, 9682 : 287 - 299
  • [2] A polyhedral approach to online bipartite matching
    Torrico, Alfredo
    Ahmed, Shabbir
    Toriello, Alejandro
    [J]. MATHEMATICAL PROGRAMMING, 2018, 172 (1-2) : 443 - 465
  • [3] Biobjective Online Bipartite Matching
    Aggarwal, Gagan
    Cai, Yang
    Mehta, Aranyak
    Pierrakos, George
    [J]. WEB AND INTERNET ECONOMICS, 2014, 8877 : 218 - 231
  • [4] Online Bipartite Matching with Reusable Resources
    Delong, Steven
    Farhadi, Alireza
    Niazadeh, Rad
    Sivan, Balasubramanian
    Udwani, Rajan
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2024, 49 (03) : 1825 - 1854
  • [5] Online total bipartite matching problem
    Meghan Shanks
    Sheldon H. Jacobson
    [J]. Optimization Letters, 2022, 16 : 1411 - 1426
  • [6] Online total bipartite matching problem
    Shanks, Meghan
    Jacobson, Sheldon H.
    [J]. OPTIMIZATION LETTERS, 2022, 16 (05) : 1411 - 1426
  • [7] Online Matching in Regular Bipartite Graphs
    Barriere, Lali
    Munoz, Xavier
    Fuchs, Janosch
    Unger, Walter
    [J]. PARALLEL PROCESSING LETTERS, 2018, 28 (02)
  • [8] Online Bipartite Perfect Matching With Augmentations
    Chaudhuri, Kamalika
    Daskalakis, Constantinos
    Kleinberg, Robert D.
    Lin, Henry
    [J]. IEEE INFOCOM 2009 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS, VOLS 1-5, 2009, : 1044 - +
  • [9] Dynamic Relaxations for Online Bipartite Matching
    Torrico, Alfredo
    Toriello, Alejandro
    [J]. INFORMS JOURNAL ON COMPUTING, 2022, 34 (04) : 1871 - 1884
  • [10] Online Bipartite Matching with Decomposable Weights
    Charikar, Moses
    Henzinger, Monika
    Nguyen, Huy L.
    [J]. ALGORITHMS - ESA 2014, 2014, 8737 : 260 - 271