Construction of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 2^{m - (m - k)}_{{\rm{III}}} $$\end{document} Designs with the Maximum Number of Clear Two-factor Interactions

被引:0
|
作者
Gui-Jun Yang
机构
[1] Tianjin University of Finance and Economics,Department of Statistics
来源
Acta Mathematicae Applicatae Sinica, English Series | 2007年 / 23卷 / 1期
关键词
Resolution; minimum aberration; clear two-factor interaction; 62K15; 62K05;
D O I
10.1007/s10255-006-0354-z
中图分类号
学科分类号
摘要
It is useful to know the maximum number of clear two-factor interactions in a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 2^{m - (m - k)}_{{\rm{III}}} $$\end{document} design. This paper provides a method to construct a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 2^{m - (m - k)}_{{\rm{III}}} $$\end{document} design with the maximum number of clear two-factor interactions. And it is proved that the resulting designs have more clear two-factor interactions than those constructed by Tang et al. [6]. Moreover, the designs constructed are shown to have concise grid representations.
引用
收藏
页码:107 / 112
页数:5
相关论文
共 50 条